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Abstract

Let 𝐾 be a mixed-characteristic local field. For an integer 𝑚 ≥ 0, we denote by 𝐾𝑚/𝐾 the maximal
𝑚-step solvable extension of 𝐾 , and denote by 𝐺𝑚𝐾 the maximal 𝑚-step solvable quotient of the ab-
solute Galois group 𝐺𝐾 of 𝐾 . We regard 𝐺𝐾 and its quotients as filtered profinite groups, equipped
with the respective ramification filtrations (in upper numbering). It is known from Mochizuki’s pre-
vious result that the isomorphism class of 𝐾 is determined by the isomorphism class of the filtered
profinite group 𝐺𝐾 . In this master’s thesis, we prove that the isomorphism class of 𝐾 is determined
by the isomorphism class of the maximal metabelian quotient 𝐺2

𝐾 as a filtered profinite group, and
furthermore, that 𝐾𝑚/𝐾 is determined functorially by the filtered profinite group 𝐺𝑚+2

𝐾 (resp. 𝐺𝑚+3
𝐾 )

for 𝑚 ≥ 2 (resp. 𝑚 = 0, 1).
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Part I
Introduction
1 Anabelian geometry and field arithmetic: A brief history
Anabelian geometry is a branch of arithmetic geometry that studies how the arithmetic information of
a geometric object 𝑋 is encoded in its (étale) fundamental group. The central philosophy, originally
proposed by A. Grothendieck [6], is that certain geometric objects of an “anabelian” nature should have
characterizations in the language of fundamental groups. This translates to the principle that a field 𝑘 of
a certain type should be determined by its absolute Galois group 𝐺𝑘 (as a topological group), by setting

𝑋 = Spec 𝑘.

The celebrated theorem of Neukirch-Uchida—which existed even before the term “anabelian” was
coined—is one of the first validations of this philosophy. The theorem states that number fields can be
determined by their absolute Galois groups [23, Corollary 2], i.e., for two number fields 𝐹◦ and 𝐹•, it
holds that

𝐹◦ � 𝐹• ⇔ 𝐺𝐹◦ � 𝐺𝐹• .

This remarkable result naturally led to investigations into the analogous statement in a local setting. That
is, for two mixed-characteristic local fields 𝐾◦ and 𝐾•, it holds that

𝐾◦ � 𝐾•
?⇔ 𝐺𝐾◦ � 𝐺𝐾• .

It is known that this statement does not hold in general (cf., e.g., [25] for a counterexample). However,
by attaching additional structures to the absolute Galois groups, S. Mochizuki [14] proved Theorem 2.1,
which implies that

𝐾◦ � 𝐾• ⇔ 𝐺𝐾◦ �filt 𝐺𝐾• ,

where �filt means that the two objects are isomorphic as filtered profinite groups. (For the definition of
filtered profinite groups and isomorphisms between them, cf. p. 6. Here, the Galois groups are regarded
as filtered profinite groups by the ramification groups in upper numbering.) Later, V. Abrashkin [1], [2]
extended this result—yet with a different method—to the case of general local fields (including equal-
characteristic local fields).

On the other hand, the question of whether results analogous to the theorem of Neukirch-Uchida
hold for various quotients of absolute Galois groups has been extensively studied. For number fields,
Saïdi-Tamagawa [18] showed that number fields can be characterized by their maximal 𝑚-step solvable
quotients (cf. p. 8) for 𝑚 ≥ 3. That is, for number fields 𝐹◦ and 𝐹•,

𝐹◦ � 𝐹• ⇔ 𝐺3
𝐹◦
� 𝐺3

𝐹•
,

where𝐺𝑚 denotes the maximal𝑚-step solvable quotient of a profinite group𝐺. Their work demonstrated
that these quotients, despite carrying less information than the full absolute Galois group, still retain
enough arithmetic information to determine the field structure.

2 Main results
One of the principal results of this master’s thesis is as follows: For two mixed-characteristic local fields
𝐾◦ and 𝐾•,

𝐾◦ � 𝐾• ⇔ 𝐺2
𝐾◦ �filt 𝐺

2
𝐾• .

Let us begin by recalling Mochizuki’s result. Let 𝐾◦ (resp. 𝐾•) be a mixed-characteristic local field
of residue characteristic 𝑝𝐾◦ (resp. 𝑝𝐾•). For each □ ∈ {◦, •}, we fix an algebraic closure 𝐾alg

□ of 𝐾□,
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and regard the absolute Galois group 𝐺𝐾□ = Gal(𝐾alg
□ /𝐾□) of 𝐾□ as a filtered profinite group by the

ramification groups in upper numbering. Suppose we are given a field isomorphism 𝑓 : 𝐾◦ → 𝐾•. Then
we have 𝑝𝐾◦ = 𝑝𝐾• (=: 𝑝) (cf., e.g., §5) and 𝑓 is, in particular, a Q𝑝-algebra isomorphism. We can
choose an isomorphism 𝜃 : 𝐾alg

◦ → 𝐾
alg
• that extends 𝑓 , which defines an isomorphism

𝐺𝐾◦
�−→ 𝐺𝐾• ; 𝜎 ↦→ 𝜃 ◦ 𝜎 ◦ 𝜃−1

of profinite groups. One can check that the above isomorphism respects the filtration by using the fact
that 𝑓 preserves the 𝑝-adic valuation. We denote by

𝜂( 𝑓 ) ∈ Outfilt(𝐺𝐾◦ , 𝐺𝐾•) := Inn(𝐺𝐾•)\Isomfilt(𝐺𝐾◦ , 𝐺𝐾•)

the equivalence class of the above isomorphism modulo inner automorphisms of 𝐺𝐾• (i.e., the outer
isomorphism defined by the above isomorphism). Here, Isomfilt(𝐺𝐾◦ , 𝐺𝐾•) (resp. Outfilt(𝐺𝐾◦ , 𝐺𝐾•))
denotes the set of isomorphisms (resp. outer isomorphisms) 𝐺𝐾◦ → 𝐺𝐾• of filtered profinite groups. We
see that 𝜂( 𝑓 ) does not depend upon the choice of the extension 𝜃; therefore, we obtain a natural map

𝜂 : IsomQ𝑝-alg(𝐾◦, 𝐾•) → Outfilt(𝐺𝐾◦ , 𝐺𝐾•).

Theorem 2.1 (Mochizuki [14, Theorem 4.2]). The map 𝜂 is a bijection. Equivalently, for an isomorphism

𝛼 : 𝐺𝐾◦
�−→ 𝐺𝐾•

of filtered profinite groups, there exists a unique isomorphism 𝜃 : 𝐾alg
◦ → 𝐾

alg
• such that

𝛼(𝜎) = 𝜃 ◦ 𝜎 ◦ 𝜃−1

for every 𝜎 ∈ 𝐺𝐾◦ . In particular, we have an isomorphism 𝜃 |𝐾◦ : 𝐾◦ → 𝐾•. ⋄

Theorem 2.1 can be considered as one form of the Grothendieck Conjecture for mixed-characteristic
local fields: The above theorem implies that the isomorphism class of a given mixed-characteristic local
field 𝐾 can be determined functorially from the isomorphism class of its absolute Galois group 𝐺𝐾 (as a
filtered profinite group).

We now turn to the results of Saïdi-Tamagawa. As mentioned in the previous section, their results
refine the theorem of Neukirch-Uchida by focusing on the isomorphisms between the maximal 𝑚-step
solvable quotients 𝐺𝑚𝐹◦ and 𝐺𝑚𝐹• , which carry less group-theoretic (and hence arithmetic) information
compared to the full absolute Galois groups 𝐺𝐹◦ and 𝐺𝐹• , for two number fields 𝐹◦ and 𝐹•.

Theorem 2.2 (Saïdi-Tamagawa [18, Theorem 1]). Assume that there exists an isomorphism

𝐴3 : 𝐺3
𝐹◦

�→ 𝐺3
𝐹•

of profinite groups. Then there exists an isomorphism ℎ : 𝐹◦
�→ 𝐹•. ⋄

Let 𝑘 be a field. For an integer 𝑚 ≥ 0, we denote by 𝑘𝑚/𝑘 the maximal 𝑚-step solvable extension of
𝑘 , i.e., the subfield of 𝑘sep fixed by

Ker (𝐺𝑘 ↠ 𝐺𝑚𝑘 ),
so that 𝐺𝑚𝑘 = Gal(𝑘𝑚/𝑘).

Theorem 2.3 (Saïdi-Tamagawa [18, Theorem 2]). Let𝑚 be an integer≥ 0. For an isomorphism 𝐴𝑚+4 : 𝐺𝑚+4
𝐹◦
→

𝐺𝑚+4
𝐹•

of profinite groups, there exists an isomorphism 𝛩𝑚+1 : 𝐹𝑚+1
◦ → 𝐹𝑚+1

• such that

𝐴𝑚+1(𝜎) = 𝛩𝑚+1 ◦ 𝜎 ◦𝛩−1
𝑚+1

for every 𝜎 ∈ 𝐺𝑚+1
𝐹◦

, where 𝐴𝑚+1 : 𝐺𝑚+1
𝐹◦
→ 𝐺𝑚+1

𝐹•
is the isomorphism induced by 𝐴𝑚+4. Moreover,
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• if 𝑚 ≥ 1, the isomorphism 𝛩𝑚+1 is uniquely determined by 𝐴𝑚+4;

• if 𝑚 = 0, the isomorphism 𝛩𝑚+1 |𝐹◦ : 𝐹◦ → 𝐹• is uniquely determined by 𝐴𝑚+4.

⋄

The statement of Theorem 2.2 lacks functoriality, meaning that there is no clear description of how
𝐴3 and ℎ are related to each other, which makes it a weak bi-anabelian result. In contrast, the isomor-
phism class of a given number field 𝐹 is functorially determined from the isomorphism class of 𝐺4

𝐹 in
Theorem 2.3; hence one might claim that Theorem 2.3 is a strong bi-anabelian result.

We proceed to the local counterpart of these theorems by stating the main results in their precise form.
For a mixed-characteristic local field 𝐾 , we again regard 𝐺𝑚𝐾 = Gal(𝐾𝑚/𝐾) as a filtered profinite group
by the ramification groups in upper numbering. Let 𝐾◦ and 𝐾• be two mixed-characteristic local fields.

Theorem 2.4. Assume that there exists an isomorphism

𝛼2 : 𝐺2
𝐾◦

�→ 𝐺2
𝐾•

of filtered profinite groups. Then there exists an isomorphism 𝑓 : 𝐾◦
�→ 𝐾•. ⋄

Theorem 2.5. Let 𝑚 be an integer ≥ 0. For an isomorphism

𝛼𝑚+3 : 𝐺𝑚+3
𝐾◦

�−→ 𝐺𝑚+3
𝐾•

of filtered profinite groups, there exists an isomorphism 𝜃𝑚+1 : 𝐾𝑚+1
◦ → 𝐾𝑚+1

• such that

𝛼𝑚+1(𝜎) = 𝜃𝑚+1 ◦ 𝜎 ◦ 𝜃−1
𝑚+1

for every 𝜎 ∈ 𝐺𝑚+1
𝐾◦

, where 𝛼𝑚+1 : 𝐺𝑚+1
𝐾◦
→ 𝐺𝑚+1

𝐾•
is the isomorphism induced by 𝛼𝑚+3. Moreover,

(i) if 𝑚 ≥ 1, the isomorphism 𝜃𝑚+1 is uniquely determined by 𝛼𝑚+3;

(ii) if 𝑚 = 0, the isomorphism 𝜃𝑚+1 |𝐾◦ : 𝐾◦ → 𝐾• is uniquely determined by 𝛼𝑚+3.

⋄

In light of the developments so far, Theorem 2.4 and Theorem 2.5 can be viewed as

• local analogues of Theorem 2.2 and Theorem 2.3, respectively;

• refinements of Theorem 2.1 for maximal 𝑚-step solvable quotients (𝑚 ≥ 2).

Neukirch-Uchida

Mochizuki [14] Saïdi-Tamagawa [18]

Theorems 2.4 and 2.5

local analogue 𝑚-step solvable version (𝑚 ≥ 3)

𝑚-step solvable version (𝑚 ≥ 2) local analogue
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In parallel with the results of Saïdi-Tamagawa, one could claim that Theorem 2.4 is a weak bi-
anabelian result, and Theorem 2.5 is a strong bi-anabelian result, since the isomorphism class of a given
mixed-characteristic local field 𝐾 is functorially determined from the isomorphism class of 𝐺3

𝐾 (as a
filtered profinite group) in Theorem 2.5.

We prove Theorems 2.4 and 2.5 in Part II, §8. The proof of Theorem 2.4 can be thought of as an
application of 𝑝-adic Hodge theory. In fact, we implement only a few adjustments to the method developed
by Mochizuki. For instance, in §7, we show that the Hodge-Tate numbers of a given abelian 𝑝-adic
representation of 𝐺𝐾 can be determined by using only the invariants of 𝐾 recoverable from the filtered
profinite group 𝐺2

𝐾 ; this is a sharpening of the preceding result due to Mochizuki [14, Corollary 3.1].
For some of the invariants of 𝐾 that we use in the proof, we will give explicit group-theoretic al-

gorithms (cf. [7, §3]) to demonstrate that those invariants can be recovered entirely from the (filtered)
profinite group structure of𝐺𝑚𝐾 for some𝑚 ≥ 1 in §§5 and 6. The reader will further observe that some of
those invariants can be recovered even without the filtration attached to the profinite group 𝐺𝑚𝐾 , although
the filtration is essential when we endow the𝐺2

𝐾 -module 𝐾1,+ with the 𝑝𝐾 -adic topology, which forces us
to keep the additional conditions on filtration in Theorems 2.4 and 2.5 (see Theorem 6.3 for more details).

3 Terminology and notation
Sets, topological spaces and numbers.

• For a set 𝑋 , we shall denote by |𝑋 | the cardinality of 𝑋 .

• For a topological space 𝑋 and a subset 𝑌 ⊆ 𝑋 , we shall denote by 𝑌 the closure of 𝑌 in 𝑋 .

• We shall denote by 𝔓𝔯𝔦𝔪𝔢𝔰 the set of prime numbers.

Groups.

• For a group 𝐺 and a set 𝑋 on which 𝐺 acts (on the left), we shall denote by 𝑋𝐺 the subset of
𝐺-invariant elements of 𝑋 .

• For a group 𝐺 and a 𝐺-module 𝑀 , we shall write 𝐻𝑖 (𝐺, 𝑀) for the 𝑖th cohomology group of 𝐺
with coefficients in 𝑀 .

• For a group 𝐺 and a subset 𝑆 ⊆ 𝐺, we shall denote by 𝑍𝐺 (𝑆) the centralizer of 𝑆 in 𝐺, and write
𝑍 (𝐺) := 𝑍𝐺 (𝐺) for the center of 𝐺. We shall say that 𝐺 is center-free if 𝑍 (𝐺) is trivial.

• For a group 𝐺, we shall denote by 𝐺 (or 𝐺∧) the profinite completion of 𝐺. For a group homo-
morphism 𝛼 : 𝐺1 → 𝐺2, we shall denote by �̂� (or 𝛼∧) the canonical homomorphism 𝐺1 → 𝐺2
induced by 𝛼.

• For a profinite group 𝐺 and a set of prime numbers 𝛴 ⊆ 𝔓𝔯𝔦𝔪𝔢𝔰, we shall denote by 𝐺pro-𝛴 the
maximal pro-𝛴 quotient of 𝐺. For a prime number ℓ, we shall denote by 𝐺pro-ℓ (resp. 𝐺prime-to-ℓ)
the maximal pro-ℓ (resp. pro-prime-to-ℓ) quotient of 𝐺. For a homomorphism 𝛼 : 𝐺1 → 𝐺2 of
profinite groups, we shall write 𝛼pro-𝛴 (resp. 𝛼pro-ℓ , resp. 𝛼prime-to-ℓ) for the homomorphism

𝐺
pro-𝛴
1 → 𝐺

pro-𝛴
2 (resp. 𝐺pro-ℓ

1 → 𝐺
pro-ℓ
2 , resp. 𝐺prime-to-ℓ

1 → 𝐺
prime-to-ℓ
2 )

induced by 𝛼.

Rings and modules.

• Throughout this master’s thesis, the term ring shall mean a commutative ring with identity element.
For a ring 𝐴, we denote by 𝐴+ (resp. 𝐴×) the additive (resp. multiplicative) group of 𝐴.
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• For an abelian group 𝑀 and an integer 𝑛, we shall denote by 𝑀tor (resp. 𝑀 [𝑛]) the torsion (resp.
𝑛-torsion) subgroup of 𝑀 . We shall write 𝑀/tor for the module 𝑀/𝑀tor.

• For a prime power 𝑞, we shall denote by F𝑞 the finite field of order 𝑞.

• For a prime number 𝑝, we shall denote by Z𝑝 (resp. Q𝑝) the ring of 𝑝-adic integers (resp. field of
𝑝-adic numbers).

• For a field 𝑘 , we shall denote by 𝔓𝔯𝔦𝔪𝔢𝔰×/𝑘 ⊆ 𝔓𝔯𝔦𝔪𝔢𝔰 the set of prime numbers invertible in 𝑘 .

• We shall denote by Ẑ the ring of profinite integers, i.e., the ring
∏
𝑝∈𝔓𝔯𝔦𝔪𝔢𝔰 Z𝑝. For a field 𝑘 , we

shall write Ẑ×/𝑘 for the maximal pro-𝔓𝔯𝔦𝔪𝔢𝔰×/𝑘 quotient of Ẑ.

• For a field 𝑘 , we shall denote by 𝜇𝑛 (𝑘) = 𝑘× [𝑛] the group of 𝑛th roots of unity in 𝑘 .

• For a field 𝑘 , we shall fix an algebraic closure 𝑘alg of 𝑘 , and denote by 𝑘sep ⊆ 𝑘alg the separable
closure. A field 𝑘 is said to be perfect if 𝑘sep = 𝑘alg.

Representations of profinite groups.

• Let ℓ be a prime number. We shall say that 𝑉 (resp. 𝑇) or (𝜌,𝑉) (resp. (𝜌, 𝑇)) is an ℓ-adic
representation (resp. a Zℓ-representation) of a profinite group 𝐺, when 𝑉 (resp. 𝑇) is a Qℓ-vector
space (resp. free Zℓ-module) of finite dimension (resp. rank) equipped with a continuous group
homomorphism

𝜌 : 𝐺 → AutQℓ (𝑉) � GL𝑑 (Qℓ) (resp. 𝜌 : 𝐺 → AutZℓ (𝑇) � GL𝑑 (Zℓ)),

where 𝑑 denotes dimQℓ (𝑉) (resp. rankZℓ (𝑇)).

• For a Galois extension 𝑙/𝑘 , we shall denote by Gal(𝑙/𝑘) the Galois group of 𝑙/𝑘 , and write 𝐺𝑘 for
the absolute Galois group Gal(𝑘sep/𝑘) of 𝑘 . Unless otherwise stated, each Galois group will be
endowed with the Krull topology, and hence regarded as a profinite group.

• For a field 𝑘 , we shall write

𝜒cycl,𝑘 : 𝐺𝑘 → Aut(lim←−−
𝑛

𝜇𝑛 (𝑘sep)) (= (Ẑ×/𝑘)×)

for the (𝔓𝔯𝔦𝔪𝔢𝔰×/𝑘-adic) cyclotomic character of 𝑘 . (The inverse limit is taken over the integers
𝑛 ≥ 1 whose prime factors belong to 𝔓𝔯𝔦𝔪𝔢𝔰×/𝑘 .) For ℓ ∈ 𝔓𝔯𝔦𝔪𝔢𝔰×/𝑘 , we shall write

𝜒 (ℓ )cycl,𝑘 : 𝐺𝑘 → Z×ℓ

for the ℓ-adic cyclotomic character of 𝑘 , i.e., the ℓ-part of 𝜒cycl,𝑘 .

4 Preliminaries
Filtered profinite groups. Let 𝐺 be a profinite group, and let 𝐼 ⊆ [0,+∞) be a closed interval. We
call a family {𝐺 (𝑣)}𝑣∈[0,+∞) (resp. {𝐺 (𝑣)}𝑣∈𝐼 ) of closed normal subgroups of 𝐺 a filtration (resp. an
𝐼-filtration) of 𝐺, if 𝐺 (𝑣1) ⊇ 𝐺 (𝑣2) for any 𝑣1, 𝑣2 ∈ [0,+∞) (resp. 𝑣1, 𝑣2 ∈ 𝐼) with 𝑣1 ≤ 𝑣2. We say that
𝐺 is a filtered (resp. an 𝐼-filtered) profinite group if a filtration (resp. an 𝐼-filtration) is attached to it.

Let 𝐺◦, 𝐺• be filtered (resp. 𝐼-filtered) profinite groups. We shall say that an isomorphism 𝛼 : 𝐺◦ →
𝐺• (of profinite groups) is an isomorphism of filtered (resp. 𝐼-filtered) profinite groups if

𝛼(𝐺◦(𝑣)) = 𝐺•(𝑣)
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for all 𝑣 ∈ [0,+∞) (resp. 𝑣 ∈ 𝐼); we denote by

Isomfilt(𝐺◦, 𝐺•) (resp. Isom𝐼-filt(𝐺◦, 𝐺•))

the set of isomorphisms of filtered (resp. 𝐼-filtered) profinite groups from𝐺◦ into𝐺•. Note that the group
Inn(𝐺•) of inner automorphisms of 𝐺• acts on Isomfilt(𝐺◦, 𝐺•) (resp. Isom𝐼-filt(𝐺◦, 𝐺•)), since 𝐺•(𝑣)
is a normal subgroup of 𝐺• for each 𝑣. Hence we can define the set of outer isomorphisms 𝐺◦ → 𝐺•:

Outfilt(𝐺◦, 𝐺•) := Inn(𝐺•)\Isomfilt(𝐺◦, 𝐺•) (resp. Out𝐼-filt(𝐺◦, 𝐺•) := Inn(𝐺•)\ Isom𝐼-filt(𝐺◦, 𝐺•)).

Mixed-characteristic local fields. We shall say that 𝐾 is a mixed-characteristic local field if it is a finite
extension of Q𝑝 for some prime number 𝑝. Given a mixed-characteristic local field 𝐾 , we write:

• 𝒪𝐾 for the ring of integers of 𝐾;

• 𝔭𝐾 for the (unique) maximal ideal of 𝒪𝐾 ;

• ord𝐾 : 𝐾× → Z+ for the normalized discrete valuation on 𝐾;

• 𝑈𝐾 = 𝑈𝐾 (0) for the unit group 𝒪×𝐾 of 𝒪𝐾 ;

• 𝑈𝐾 (𝑛) for the 𝑛th higher unit group 1 + 𝔭𝑛𝐾 of 𝒪𝐾 (𝑛 ∈ Z≥1);

• 𝔨𝐾 for the residue field 𝒪𝐾/𝔭𝐾 of 𝐾;

• 𝑝𝐾 for the residue characteristic of 𝐾 , i.e., the characteristic of 𝔨𝐾 ;

• 𝜀𝐾 := 1 (resp. 𝜀𝐾 := 2) if 𝑝𝐾 is odd (resp. even);

• 𝑎𝐾 for the largest integer ≥ 0 such that 𝐾 contains a (𝑝𝑎𝐾𝐾 )th root of unity;

• 𝑑𝐾 for the absolute degree [𝐾 : Q𝑝𝐾 ] of 𝐾;

• 𝑒𝐾 for the absolute ramification index of 𝐾 , so that 𝑝𝐾𝒪𝐾 = 𝔭𝑒𝐾𝐾 ;

• 𝑓𝐾 for the absolute inertia degree [𝔨𝐾 : F𝑝𝐾 ], so that |𝔨𝐾 | = 𝑝
𝑓𝐾
𝐾 , and 𝑑𝐾 = 𝑒𝐾 𝑓𝐾 ;

• 𝜒𝐾 = 𝜒 (𝑝𝐾 )cycl,𝐾 : 𝐺𝐾 → Z×𝑝𝐾 for the 𝑝𝐾 -adic cyclotomic character of 𝐾;

• 𝐾un for the maximal unramified extension of 𝐾 in 𝐾alg;

• 𝐾 tame for the maximal tamely ramified extension of 𝐾 in 𝐾alg;

• Frob𝐾 ∈ Gal(𝐾un/𝐾) for the arithmetic Frobenius of 𝐾 , so that Frob𝐾 ↦→ (−) |𝔨𝐾 | under the natural
isomorphism Gal(𝐾un/𝐾) → 𝐺𝔨𝐾 , and Gal(𝐾un/𝐾) = FrobẐ+

𝐾 � Ẑ+.

For more details on (mixed-characteristic and general) local fields, cf., e.g., [4], [10], [12], [16], [21].

Ramification groups in upper numbering. For a mixed-characteristic local field 𝐾 and any Galois ex-
tension 𝐹/𝐾 contained in 𝐾alg, the Galois group 𝐺 = Gal(𝐹/𝐾) is a profinite group equipped with the
filtration defined by the ramification groups in upper numbering (cf. [21, Chap. IV, §3]); we denote
by 𝐺 (𝑣) the 𝑣th ramification group for a real number 𝑣 ≥ 0. The upper numbering is compatible with
quotients: If 𝑁 is a closed normal subgroup of 𝐺, then

(𝐺/𝑁)(𝑣) = 𝐺 (𝑣)𝑁/𝑁 (1)
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for all 𝑣 ≥ 0 (cf. loc. cit.). Therefore, given a fundamental system 𝒩 of neighborhoods of the identity
element consisting of open normal subgroups of 𝐺, we have a natural isomorphism

𝐺 (𝑣) �−→ lim←−−
𝑁 ∈𝒩
(𝐺/𝑁) (𝑣) (2)

of profinite groups. Note that

𝐺 (0) = Gal(𝐹/(𝐹 ∩ 𝐾un)),⋃
𝑣>0

𝐺 (𝑣) = Gal(𝐹/(𝐹 ∩ 𝐾 tame)),

i.e., 𝐺 (0) (resp. 𝐺 (0+) :=
⋃
𝑣>0𝐺 (𝑣)) is precisely the inertia subgroup (resp. wild inertia subgroup) of

𝐺. (See also loc. cit., Exercise 1.)
Suppose that 𝐿/𝐾 is a finite Galois subextension of 𝐹/𝐾 . We set 𝐻 := Gal(𝐹/𝐿), so that 𝐺/𝐻 =

Gal(𝐿/𝐾). We define the function 𝜙 = 𝜙𝐿/𝐾 : [0,+∞) → [0,+∞) as the inverse function of

𝜓(𝑣) = 𝜓𝐿/𝐾 (𝑣) :=
∫ 𝑣

0
((𝐺/𝐻) : (𝐺/𝐻) (𝑤)) 𝑑𝑤.

It is clear from (1) that 𝜙 and 𝜓 are determined by the groups 𝐻, 𝐺, and 𝐺 (𝑣) for 𝑣 ≥ 0. Suppose that 𝑁
is an open subgroup in 𝐻, and that 𝑁 ⊴ 𝐺. One can easily verify that

(𝐻/𝑁) (𝑤) = (𝐻/𝑁) ∩ (𝐺/𝑁)(𝜙(𝑤))

for all 𝑤 ≥ 0 (from, e.g., loc. cit., Proposition 15), and derive the following lemma from (2).

Lemma 4.1. For a real number 𝑤 ≥ 0, the 𝑤th ramification group 𝐻 (𝑤) of 𝐻 is determined by the groups
𝐻, 𝐺, and 𝐺 (𝑣) for 𝑣 ≥ 0: We have

𝐻 (𝑤) = lim←−−
𝑁

{(𝐻/𝑁) ∩ (𝐺/𝑁)(𝜙(𝑤))}

as a subset of 𝐻 = lim←−−𝑁 (𝐻/𝑁), where 𝑁 runs through the open subgroups of 𝐻 such that 𝑁 ⊴ 𝐺. ⋄

Solvable quotients of profinite groups. For a profinite group𝐺, we denote by [𝐺,𝐺] the closed subgroup
generated by the commutators of 𝐺, i.e., the elements of the form 𝜎𝜏𝜎−1𝜏−1, where 𝜎, 𝜏 ∈ 𝐺. We
inductively define the decreasing sequence

𝐺 = 𝐺 [0] ⊇ 𝐺 [1] ⊇ · · · ⊇ 𝐺 [𝑚] ⊇ · · ·

of closed normal subgroups of 𝐺, by 𝐺 [𝑚+1] = [𝐺 [𝑚] , 𝐺 [𝑚]]. Note that 𝐺 [𝑚] are characteristic sub-
groups of 𝐺, i.e., every automorphism of 𝐺 restricts to an automorphism of 𝐺 [𝑚] . We say that a profinite
group 𝐺 is 𝑚-step solvable (resp. abelian, resp. metabelian) if 𝐺 [𝑚] (resp. 𝐺 [1] , resp. 𝐺 [2]) is trivial.
We denote by 𝐺𝑚 the quotient 𝐺/𝐺 [𝑚] , and call it the maximal 𝑚-step solvable quotient of 𝐺. We will
often write 𝐺ab (resp. 𝐺mab) instead of 𝐺1 (resp. 𝐺2), and call it the maximal abelian (resp. metabelian)
quotient or abelianization (resp. metabelianization) of 𝐺.

For a field 𝑘 , we shall denote by 𝑘𝑚 (resp. 𝑘ab, resp. 𝑘mab) the subextension of 𝑘sep/𝑘 fixed by
𝐺 [𝑚]𝑘 (resp. 𝐺 [1]𝑘 , resp. 𝐺 [2]𝑘 ), and call it the maximal 𝑚-step solvable (resp. abelian, resp. metabelian)
extension of 𝑘 . In particular, we have

𝐺𝑚𝑘 = Gal(𝑘𝑚/𝑘), 𝐺ab
𝑘 = Gal(𝑘ab/𝑘), 𝐺mab

𝑘 = Gal(𝑘mab/𝑘).
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Definition 4.2. Let 𝑚 be an integer ≥ 0, and let 𝐺 be a profinite group. We shall say that 𝐺 is a profinite
group of MLF- (resp. MLF𝑚-, resp. MLFab-, resp. MLFmab-) type if there exists an isomorphism of
profinite groups between 𝐺 and 𝐺𝐾 (resp. 𝐺𝑚𝐾 , resp. 𝐺ab

𝐾 , resp. 𝐺mab
𝐾 ), for some mixed-characteristic

local field 𝐾 . We define filtered and 𝐼-filtered profinite groups of MLF- (resp. MLF𝑚-, resp. MLFab-,
resp. MLFmab-) type for a closed interval 𝐼 ⊆ [0,+∞) in a similar way. ⋄

We prove the following lemma for later use.

Lemma 4.3. Let 𝑚, 𝑛 be integers ≥ 0.

(1) Let 𝛤 be a profinite group, 𝐻 an open subgroup of 𝛤𝑚+𝑛 containing

(𝛤𝑚+𝑛) [𝑚] = Ker (𝛤𝑚+𝑛 ↠ 𝛤𝑚) = 𝛤 [𝑚]/𝛤 [𝑚+𝑛] .

If we denote by �̃� the inverse image of 𝐻 under the natural surjection 𝛤 ↠ 𝛤𝑚+𝑛, then the natural
surjection �̃�𝑛 ↠ 𝐻𝑛 is injective.

(2) Let 𝑘 be a field. For a finite extension 𝑙/𝑘 , we have

𝐺𝑛𝑙 = Gal(𝑘𝑚+𝑛/𝑙)𝑛

if 𝑙 is contained in 𝑘𝑚. In particular, if 𝐺 is a profinite group of MLF𝑚+𝑛-type (i.e., 𝐺 = 𝛤𝑚+𝑛 for
some profinite group 𝛤 of MLF-type), and 𝐻 is an open subgroup of 𝐺 containing 𝐺 [𝑚] , then 𝐻𝑛
is a profinite group of MLF𝑛-type.

⋄

Proof.

(1) Since the natural surjection �̃� ↠ 𝐻 = �̃�/𝛤 [𝑚+𝑛] induces an isomorphism

�̃� [𝑛]𝛤 [𝑚+𝑛]/𝛤 [𝑚+𝑛] = �̃� [𝑛]/(�̃� [𝑛] ∩ 𝛤 [𝑚+𝑛]) �−→ (�̃�/𝛤 [𝑚+𝑛]) [𝑛] ,

we have a natural isomorphism �̃�/�̃� [𝑛]𝛤 [𝑚+𝑛] → 𝐻𝑛. It follows from the hypothesis that �̃� ⊇
𝛤 [𝑚] (and that �̃� [𝑛] ⊇ 𝛤 [𝑚+𝑛]), and hence the assertion holds.

(2) Apply (1) to the case 𝛤 = 𝐺𝑘 , 𝐻 = Gal(𝑘𝑚+𝑛/𝑙).

□

Remark.

(1) If 𝐺 is a profinite group of MLF-type, 𝐺 is prosolvable [21, Chap. IV, Corollary 5 of Proposition
7]; hence ⋂

𝑚≥0
𝐺 [𝑚] = {1}.

However, 𝐺 itself is not solvable, i.e., 𝐺 [𝑚] ≠ {1} for every 𝑚 ≥ 0. This can be seen from the
fact that, for every prime number 𝑝, the wild inertia subgroup of 𝐺Q𝑝 is isomorphic to a free pro-
𝑝 group of countably infinite rank [17, Proposition 7.5.1], which is not solvable. Therefore, the
sequence

{
𝐺 [𝑚]

}
𝑚≥0 is strictly decreasing.

(2) Let 𝐺 be a profinite group of MLF𝑚-type for some integer 𝑚 ≥ 0. If we denote by 𝑚(𝐺) the
minimal integer 𝑛 such that 𝐺 [𝑛] = {1}, then 𝑚 = 𝑚(𝐺). In other words, 𝑚(𝐺)—which is group-
theoretically determined from the profinite group 𝐺—is the only integer 𝑚 ≥ 0 for which 𝐺 is a
profinite group of MLF𝑚-type: Assume that 𝐺 � 𝐺𝑚𝐾 for some mixed-characteristic local field 𝐾
and an integer 𝑚. Then obviously 𝐺 [𝑚] = {1}, and it is clear from (1) that 𝐺 [𝑛] ≠ {1} if 𝑛 < 𝑚.
Thus 𝑚(𝐺) equals 𝑚 by definition.

⋄

9



Part II
The 𝑚-step solvable anabelian geometry of
mixed-characteristic local fields
Let 𝑚 be an integer ≥ 1, and let 𝐾 , 𝐾◦, 𝐾• be mixed-characteristic local fields. In Part II, we work with (a
(filtered) profinite group isomorphic to) the maximal 𝑚-step solvable quotient 𝐺𝑚𝐾 of the absolute Galois
group 𝐺𝐾 , providing an analysis of what arithmetic information about 𝐾 is retained by 𝐺𝑚𝐾 , e.g.,

• In §5, we show that 𝑝𝐾 , 𝑑𝐾 , 𝑒𝐾 and 𝑓𝐾 can be determined entirely group-theoretically from the
profinite group 𝐺ab

𝐾 , and establish a group-theoretic algorithm that recovers 𝜒𝐾 from the profinite
group 𝐺mab

𝐾 .

• In §6, we determine group-theoretically the inertia and wild inertia group of 𝐺𝑚+1
𝐾 . Then we re-

construct the𝐺𝐾 -module 𝐾𝑚,+ from the profinite group structure of𝐺𝑚+1
𝐾 , and recover its 𝑝𝐾 -adic

topology from the ramification groups attached to 𝐺𝑚+1
𝐾 .

With these results, we deduce the Hodge-Tate preserving property of an isomorphism 𝐺mab
𝐾◦
→ 𝐺mab

𝐾•
of

filtered profinite groups (see §7): If
𝐺ab
𝐾•
→ AutQ𝑝𝐾 (𝑉) (3)

is an abelian Hodge-Tate representation and𝐺mab
𝐾◦
→ 𝐺mab

𝐾•
is an isomorphism of filtered profinite groups,

then the composition
𝐺ab
𝐾◦
→ 𝐺ab

𝐾•
→ AutQ𝑝𝐾 (𝑉) (4)

is also a Hodge-Tate representation, where the first arrow is the isomorphism induced by 𝐺mab
𝐾◦
→ 𝐺mab

𝐾•
.

Moreover, the Hodge-Tate decompositions of the two representations (3) and (4) coincide. In §8, we
apply this result (in a manner essentially identical to that of Mochizuki) to establish the main theorems
(Theorems 2.4 and 2.5).

5 Restoration of the cyclotomic character
In the current section, we show that some invariants of a mixed-characteristic local field 𝐾 (including the
𝑝𝐾 -adic cyclotomic character 𝜒𝐾 ) can be recovered “group-theoretically” from the maximal metabelian
quotient 𝐺mab

𝐾 of 𝐺𝐾 .
Suppose that 𝐺 is a profinite group of MLFab-type, i.e., there exists an isomorphism 𝐺 → 𝐺ab

𝐾 =
Gal(𝐾ab/𝐾) of profinite groups for some mixed-characteristic local field 𝐾 . We first observe the structure
of the group 𝐾×. Let 𝜋 ∈ 𝐾× be a uniformizer of 𝐾 , i.e., an element such that 𝔭𝐾 = 𝜋𝒪𝐾 . Then we have
the isomorphisms of topological groups

𝐾× = 𝑈𝐾 · 𝜋Z+ �−→ 𝑈𝐾 ⊕ Z+,

𝑈𝐾 = 𝜇 |𝔨𝐾 |−1(𝐾) ·𝑈𝐾 (1)
�−→ (Z/(𝑝 𝑓𝐾𝐾 − 1)Z)+ ⊕ (Z/𝑝𝑎𝐾𝐾 Z)+ ⊕ (Z+𝑝𝐾 )

⊕𝑑𝐾

(cf. [9, Chap. II, §2], [16, Chap. II, §5]). We recall from local class field theory (cf., e.g., [4], [9], [13],
[16], [20], [21], [26]) that the local reciprocity map (or local Artin map) Art𝐾 : 𝐾× → 𝐺ab

𝐾 fits into the
following commutative diagram (in which the rows are splitting exact sequences)

1 𝑈𝐾 𝐾× Z+ 1

1 𝐺ab
𝐾 (0) 𝐺ab

𝐾 Gal(𝐾un/𝐾) 1

⊆

�,Art𝐾 |𝑈𝐾

ord𝐾

Art𝐾 Frob(−)𝐾
⊆ (−) |𝐾un
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and yields an isomorphism of profinite groups

𝐾× (� 𝑈𝐾 ⊕ Ẑ+) �−→ 𝐺ab
𝐾 (� 𝐺ab

𝐾 (0) ⊕ Gal(𝐾un/𝐾)),

by profinite completion. In particular, we have

𝐺 � (Z/(𝑝 𝑓𝐾𝐾 − 1)Z)+ ⊕ (Z/𝑝𝑎𝐾𝐾 Z)+ ⊕ (Z+𝑝𝐾 )
⊕𝑑𝐾 ⊕ Ẑ+ (5)

as profinite groups. We denote by 𝑝(𝐺) the uniquely determined prime number ℓ such that

logℓ |𝐺/tor/ℓ · 𝐺/tor | ≥ 2.

Furthermore, we set:

• 𝜀(𝐺) := 1 (resp. 𝜀(𝐺) := 2) if 𝑝(𝐺) is odd (resp. even);

• 𝑎(𝐺) := log𝑝 (𝐺) | (𝐺 tor)pro-𝑝 (𝐺) |;

• 𝑑 (𝐺) := log𝑝 (𝐺) |𝐺/tor/𝑝(𝐺) · 𝐺/tor | − 1;

• 𝑓 (𝐺) := log𝑝 (𝐺) ( | (𝐺 tor)prime-to-𝑝 (𝐺) | + 1);

• 𝑒(𝐺) := 𝑑 (𝐺)/ 𝑓 (𝐺).

Proposition 5.1. Let 𝐾 be a mixed-characteristic local field. Then we have

𝑝𝐾 = 𝑝(𝐺ab
𝐾 ), 𝜀𝐾 = 𝜀(𝐺ab

𝐾 ), 𝑎𝐾 = 𝑎(𝐺ab
𝐾 ),

𝑑𝐾 = 𝑑 (𝐺ab
𝐾 ), 𝑒𝐾 = 𝑒(𝐺ab

𝐾 ), 𝑓𝐾 = 𝑓 (𝐺ab
𝐾 ).

⋄

Intuitively speaking, 𝑝𝐾 , 𝜀𝐾 , 𝑎𝐾 , 𝑑𝐾 , 𝑒𝐾 and 𝑓𝐾 can be recovered entirely group-theoretically from
the profinite group 𝐺ab

𝐾 .

Proof. It follows from (5) that 𝑝𝐾 is the only prime number ℓ such that

logℓ | (𝐺ab
𝐾 )/tor/ℓ · (𝐺ab

𝐾 )/tor | ≥ 2.

Hence 𝑝𝐾 = 𝑝(𝐺ab
𝐾 ), 𝜀𝐾 = 𝜀(𝐺ab

𝐾 ) and

𝑑 (𝐺ab
𝐾 ) = log𝑝 (𝐺ab

𝐾 )
| (𝐺ab

𝐾 )/tor/𝑝(𝐺) · (𝐺ab
𝐾 )/tor | − 1 = log𝑝𝐾 | (𝐺

ab
𝐾 )/tor/𝑝𝐾 · (𝐺ab

𝐾 )/tor | − 1 = 𝑑𝐾 .

We also see from (5) that the pro-prime-to-𝑝𝐾 (resp. pro-𝑝𝐾 ) part of (𝐺ab
𝐾 )tor has exactly 𝑝 𝑓𝐾𝐾 − 1 (resp.

𝑝𝑎𝐾𝐾 ) elements. Therefore, we obtain the third, fifth and sixth equalities. □

Next, we give a reconstruction algorithm that takes as input a profinite group of MLFmab-type, say,
𝐺, and returns (the isomorphism class of) a Zℓ-representation of 𝐺 of rank 1, for each prime number ℓ.
Suppose that there exists an isomorphism 𝛼 : 𝐺 → 𝐺mab

𝐾 of profinite groups for a mixed-characteristic
local field 𝐾 . We start by choosing a decreasing sequence

𝐺 = 𝐻0 ⊇ 𝐻1 ⊇ · · · ⊇ 𝐻𝜈 ⊇ · · ·

of open normal subgroups of 𝐺 such that, for each 𝜈 ∈ Z≥0,

(i) 𝐻ab
𝜈 [ℓ𝜈] � (Z/ℓ𝜈Z)+;

(ii) 𝐺/𝐻𝜈 is abelian.
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(Note that 𝐺 acts on 𝐻ab
𝜈 [ℓ𝜈] by conjugation.) Such a sequence {𝐻𝜈}𝜈 exists: We can choose 𝐻𝜈 =

𝛼−1(Gal(𝐾mab/𝐾 (𝜁ℓ𝜈 ))), where 𝜁ℓ𝜈 is a primitive (ℓ𝜈)th root of unity. It follows immediately that {𝐻𝜈}𝜈
satisfies the condition (ii). We can also verify that {𝐻𝜈}𝜈 satisfies the condition (i), using the local reci-
procity map

Art𝐾 (𝜁ℓ𝜈 ) : 𝐾 (𝜁ℓ𝜈 )
× → 𝐺ab

𝐾 (𝜁ℓ𝜈 )

and the fact that
𝐻ab
𝜈 � Gal(𝐾mab/𝐾 (𝜁ℓ𝜈 ))ab = 𝐺ab

𝐾 (𝜁ℓ𝜈 ) ,

which follows from Theorem 4.3.
We know from local class field theory that if 𝐿□ ⊆ 𝐾ab is the field fixed by 𝛼(𝐻□) for each □ ∈

{𝜈, 𝜈 + 1}, then the diagram

𝐻ab
𝜈 Gal(𝐾mab/𝐿𝜈)ab = 𝐺ab

𝐿𝜈
𝐿×𝜈

𝐻ab
𝜈+1 Gal(𝐾mab/𝐿𝜈+1)ab = 𝐺ab

𝐿𝜈+1
𝐿×𝜈+1

�,𝛼𝜈

Ver Ver

Art𝐿𝜈

⊆

�,𝛼𝜈+1 Art𝐿𝜈+1

commutes, where Ver is the transfer map (cf., e.g., [21, Chap. VII, §8], [24, §6.7]) and 𝛼□ is the isomor-
phism of profinite groups induced by 𝛼. Moreover, Art𝐿□ restricts to an isomorphism 𝑈𝐿□ → 𝐺ab

𝐿□
(0),

and hence to an isomorphism 𝜇ℓ□ (𝐿□) → 𝐺ab
𝐿□
[ℓ□]. Therefore, Ver restricts to an injective homomor-

phism 𝐻ab
𝜈 [ℓ𝜈] → 𝐻ab

𝜈+1 [ℓ
𝜈+1]; we identify 𝐻ab

𝜈 [ℓ𝜈] with a subgroup of 𝐻ab
𝜈+1 [ℓ

𝜈+1] via Ver. (We will
see later that the transfer map Ver here is in fact an injective homomorphism—cf. Theorem A.3 (2).)

We have the inverse system

· · · 𝐻ab
𝜈+1 [ℓ

𝜈+1] 𝐻ab
𝜈 [ℓ𝜈] · · · 𝐻ab

1 [ℓ]
(−)ℓ (−)ℓ (−)ℓ (−)ℓ

of 𝐺-modules induced by the homomorphisms 𝐻ab
𝜈+1

(−)ℓ−−−→ 𝐻ab
𝜈+1. By passage to the limit, we obtain

𝑇ℓ (𝐺) := lim←−−
𝜈

𝐻ab
𝜈 [ℓ𝜈] .

It will be implicitly shown in the proof of Theorem 5.2 that the isomorphism class of the 𝐺-module
𝐻ab
𝜈 [ℓ𝜈] for each 𝜈 (and hence the isomorphism class of 𝑇ℓ (𝐺)) does not depend upon the choice of 𝐻𝜈 .

We shall write
𝜒 (ℓ ) (𝐺) : 𝐺 → Aut(𝑇ℓ (𝐺)) (= Z×ℓ )

for the ℓ-adic character of 𝐺 attached to 𝑇ℓ (𝐺), and we define 𝜒(𝐺) as follows:

𝜒(𝐺) := 𝜒 (𝑝 (𝐺
ab ) ) (𝐺).

Proposition 5.2. Let 𝐾 be a mixed-characteristic local field.

(1) For each prime number ℓ, there exists an isomorphism

Zℓ (1)
�−→ 𝑇ℓ (𝐺mab

𝐾 )

of 𝐺mab
𝐾 -modules, where Zℓ (1) denotes the first Tate twist of the trivial 𝐺mab

𝐾 -module Zℓ .

(2) The cyclotomic character 𝜒𝐾 factors through 𝜒(𝐺mab
𝐾 ).

⋄

Intuitively speaking, 𝜒cycl,𝐾 : 𝐺𝐾 → Ẑ× and 𝜒𝐾 can be recovered entirely group-theoretically from
the profinite group 𝐺mab

𝐾 .
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Proof. (1) We take a decreasing sequence

𝐺mab
𝐾 = 𝐻𝐾,0 ⊇ 𝐻𝐾,1 ⊇ · · · ⊇ 𝐻𝐾,𝜈 ⊇ · · ·

of open normal subgroups of 𝐺mab
𝐾 satisfying the above conditions (i) and (ii). We shall write 𝐿𝜈 for the

corresponding fixed field (𝐾mab)𝐻𝐾,𝜈 of 𝐻𝐾,𝜈 . By Theorem 4.3 and the condition (ii), we have 𝐺ab
𝐿𝜈

=

𝐻ab
𝐾,𝜈 for each 𝜈, and thus we have a group homomorphism

𝑟𝜈 := Art𝐿𝜈 : 𝐿×𝜈 → 𝐻ab
𝐾,𝜈 .

It is implied by the condition (i) that 𝐿𝜈 contains the (ℓ𝜈)th roots of unity. Moreover, it can be seen from
local class field theory that 𝑟𝜈 respects the𝐺mab

𝐾 -action (cf. [4, Chap. IV, (4.2)]). We obtain by restriction
the 𝐺mab

𝐾 -module isomorphism

𝑟𝜈 : ((Z/ℓ𝜈Z)+ �) 𝜇ℓ𝜈 (𝐿𝜈)
�−→ ((Z/ℓ𝜈Z)+ �) 𝐻ab

𝐾,𝜈 [ℓ𝜈],

and the commutative diagram

𝐿×𝜈+1 𝐿×𝜈+1

𝐻ab
𝐾,𝜈+1 𝐻ab

𝐾,𝜈+1

(−)ℓ

𝑟𝜈+1 𝑟𝜈+1

(−)ℓ

of 𝐺mab
𝐾 -modules. We also know from local class field theory that the diagram

𝐿×𝜈 𝐿×𝜈+1

𝐻ab
𝐾,𝜈 𝐻ab

𝐾,𝜈+1

⊆

𝑟𝜈 𝑟𝜈+1

Ver

commutes. Hence we have the following commutative diagram:

· · · 𝜇ℓ𝜈+1 (𝐿𝜈+1) 𝜇ℓ𝜈 (𝐿𝜈) · · · 𝜇ℓ (𝐿1)

· · · 𝐻ab
𝐾,𝜈+1 [ℓ

𝜈+1] 𝐻ab
𝐾,𝜈 [ℓ𝜈] · · · 𝐻ab

𝐾,1 [ℓ]

(−)ℓ

(−)ℓ
�,𝑟𝜈+1 �,𝑟𝜈

(−)ℓ

(−)ℓ

(−)ℓ

(−)ℓ

(−)ℓ

(−)ℓ
�,𝑟1 .

By passage to the limit, we obtain the following isomorphism of 𝐺mab
𝐾 -modules.

𝑟 := lim←−−
𝜈

𝑟𝜈 : Zℓ (1) = lim←−−
𝜈

𝜇ℓ𝜈 (𝐿𝜈)
�−→ 𝑇ℓ (𝐺mab

𝐾 ) = lim←−−
𝜈

𝐻ab
𝐾,𝜈 [ℓ𝜈]

(2) It is clear from (1) and Theorem 5.1. □

Remark. Theorem 5.2 can be considered as a local analogue of [18, Proposition A.9]. ⋄

6 Ramification groups in upper numbering
We keep the notation and hypotheses of §5. In this section, we recover the 𝐺𝐾 -module structure of 𝐾ab,+

and its 𝑝𝐾 -adic completion from the filtered profinite group 𝐺mab
𝐾 .

Assume that 𝐺 is a profinite group of MLF𝑚+1-type for an integer 𝑚 ≥ 1. It follows directly from
Theorem 4.3 that if 𝐻 is an open subgroup of𝐺 containing𝐺 [𝑚] , then 𝐻ab is a profinite group of MLFab-
type. We denote by 𝐼 (𝐺) the intersection of open subgroups 𝐻 such that 𝐻 ⊇ 𝐺 [1] and 𝑒(𝐻ab) = 𝑒(𝐺ab).
We also denote by 𝑃(𝐺) the (necessarily unique) pro-𝑝(𝐺ab)-Sylow subgroup of 𝐼 (𝐺).
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Lemma 6.1. Let 𝐾 be a mixed-characteristic local field, and let 𝑚 be an integer ≥ 1. Then the inertia
group (resp. wild inertia group) of 𝐺𝑚+1

𝐾 equals 𝐼 (𝐺𝑚+1
𝐾 ) (resp. 𝑃(𝐺𝑚+1

𝐾 )). In particular, the inertia
group (resp. wild inertia group) of 𝐺𝑚+1

𝐾 can be determined entirely group-theoretically, without the
additional information on filtration. ⋄

Proof. Keeping in mind that every unramified extension of 𝐾 is abelian, one checks by using Theorem 4.3
and Theorem 5.1 that the open subgroups of𝐺𝑚+1

𝐾 containing 𝐼 (𝐺𝑚+1
𝐾 ) are precisely the ones correspond-

ing to the finite unramified extensions over 𝐾; hence 𝐼 (𝐺𝑚+1
𝐾 ) equals the inertia group. Since the wild

inertia group is nothing but the unique pro-𝑝𝐾 -Sylow subgroup of the inertia group (For the finite order
case, see [21, Chap. IV], Corollaries 1 and 3 of Proposition 7. One easily reduces to this case, since wild
inertia groups are compatible with quotients, cf. loc. cit., Exercise 1 of §2.), the assertion on the wild
inertia group holds as well. □

Remark. If 𝑚 is an integer ≥ 2 and 𝐻 is an open subgroup of 𝐺 containing 𝐺 [2] , 𝐻ab is a profinite group
of MLFab-type as remarked above. Hence in the case 𝑚 ≥ 2, one could alternatively define 𝑃(𝐺) as the
intersection of open subgroups 𝐻 such that 𝐻 ⊇ 𝐺 [2] and 𝑒(𝐻ab)/𝑒(𝐺ab) is coprime to 𝑝(𝐺ab): Keeping
in mind that every tamely ramified extension of 𝐾 is metabelian, one checks as in the above proof that the
open subgroups of 𝐺𝑚+1

𝐾 containing 𝑃(𝐺𝑚+1
𝐾 ) are precisely the ones corresponding to the finite tamely

ramified extensions over 𝐾 . Thus 𝑃(𝐺𝑚+1
𝐾 ) equals the wild inertia group of 𝐺𝑚+1

𝐾 . ⋄
Once again, let𝐺 be a profinite group of MLF𝑚+1-type for an integer𝑚 ≥ 1, and letℋ𝑚(𝐺) denote the

set of open normal subgroups of𝐺 containing𝐺 [𝑚] , ordered by reverse inclusion. For each 𝐻 ∈ℋ𝑚(𝐺),
we denote by𝑈 (𝐻) the image of 𝐻 ∩ 𝑃(𝐺) under the natural map 𝐻 ↠ 𝐻ab, then we see that 𝐺 acts on
𝑈 (𝐻) by conjugation.

We first claim that, for 𝐻1, 𝐻2 ∈ℋ𝑚(𝐺) with 𝐻1 ⊇ 𝐻2, the transfer map Ver : 𝐻ab
1 → 𝐻ab

2 restricts to
𝑈 (𝐻1) → 𝑈 (𝐻2), and that {𝑈 (𝐻)}𝐻∈ℋ𝑚 (𝐺) forms a direct system of 𝐺-modules, together with 𝑉1,2 :=
Ver |𝑈 (𝐻1 ) : 𝑈 (𝐻1) → 𝑈 (𝐻2) for each pair 𝐻1 ⊇ 𝐻2. Suppose that there exists an isomorphism 𝛼 : 𝐺 →
𝐺𝑚+1
𝐾 of profinite groups for some mixed-characteristic local field 𝐾 , and that, for each □ ∈ {1, 2},

the image of 𝐻□ equals Gal(𝐾𝑚+1/𝐿□), where 𝐿□/𝐾 is a finite Galois subextension of 𝐾𝑚/𝐾 . Note
that Gal(𝐾𝑚+1/𝐿□)ab = 𝐺ab

𝐿□
by Theorem 4.3 (and hence 𝐻ab

□ is of MLFab-type). The isomorphism
𝛼□ : 𝐻ab

□ → Gal(𝐾𝑚+1/𝐿□)ab induced by 𝛼 indeed fits into the following commutative diagram:

𝐻ab
1 Gal(𝐾𝑚+1/𝐿1)ab = 𝐺ab

𝐿1
𝐿×1

𝐻ab
2 Gal(𝐾𝑚+1/𝐿2)ab = 𝐺ab

𝐿2
𝐿×2

Ver Ver

�,𝛼1

�,𝛼2

⊆

Art𝐿1

Art𝐿2

We see from Theorem 6.1 that 𝐻□ ∩ 𝑃(𝐺) ⊆ 𝐺 is mapped onto

Gal(𝐾𝑚+1/𝐿□) ∩ 𝑃(𝐺𝑚+1
𝐾 ) = Gal(𝐾𝑚+1/𝐿□) ∩ 𝐺𝑚+1

𝐾 (0+) = Gal(𝐾𝑚+1/𝐿□) (0+)

under 𝛼; hence 𝑈 (𝐻□) ⊆ 𝐻ab
□ is mapped onto 𝐺ab

𝐿□
(0+) under 𝛼□. Therefore, it suffices to show that the

middle vertical arrow restricts to𝐺ab
𝐿1
(0+) → 𝐺ab

𝐿2
(0+). But by local class field theory and the theorem of

Hasse-Arf (cf. [21, Chap. V]), 𝑈𝐿□ (1) is mapped onto 𝐺ab
𝐿□
(0+) under the local reciprocity map Art𝐿□ ,

and hence
Ver(𝐺ab

𝐿1
(0+)) = Ver(Art𝐿1 (𝑈𝐿1 (1))) ⊆ Art𝐿2 (𝑈𝐿2 (1)) = 𝐺ab

𝐿2
(0+).

In particular, the restriction of Art𝐿□ to 𝑈𝐿□ (1) → 𝐺ab
𝐿□
(0+) is an isomorphism. It follows immediately

that {𝑈 (𝐻)}𝐻∈ℋ𝑚 (𝐺) is a direct system induced by the direct system {𝑈𝐿 (1)}𝐿/𝐾 , where 𝐿/𝐾 runs
through the finite Galois subextensions of 𝐾𝑚/𝐾; each𝑈 (𝐻) is a (topological) Z𝑝-module of finite rank,
where 𝑝 := 𝑝(𝐺ab) = 𝑝𝐾 . Hence we obtain a direct system

{
𝑈 (𝐻) ⊗Z𝑝 Q𝑝

}
𝐻∈ℋ𝑚 (𝐺) of𝐺-modules; we

set
𝑘𝑚,+(𝐺) := lim−−→

𝐻∈ℋ𝑚 (𝐺)

(
𝑈 (𝐻) ⊗Z𝑝 Q𝑝

)
.
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Proposition 6.2. Let 𝐾 be a mixed-characteristic local field, and let 𝑚 be an integer ≥ 1. Then there
exists an isomorphism

𝑘𝑚,+(𝐺𝑚+1
𝐾 ) �−→ 𝐾𝑚,+

of 𝐺𝑚+1
𝐾 -modules. ⋄

Speaking from an intuitive level, the𝐺𝑚+1
𝐾 -module𝐾𝑚,+ can be recovered entirely group-theoretically

from the profinite group 𝐺𝑚+1
𝐾 .

Proof. Let 𝐻□ = Gal(𝐾𝑚+1/𝐿□) ∈ ℋ𝑚(𝐺𝑚+1
𝐾 ) for each □ ∈ {1, 2}, and assume that 𝐻1 ⊇ 𝐻2. By

construction, 𝑈 (𝐻□) = Gal(𝐾𝑚+1/𝐿□)ab(0+) = 𝐺ab
𝐿□
(0+). The 𝑝𝐾 -adic logarithm (cf. [16, Chap. II,

§5], [10, Chap. IV, §2]) gives the following commutative diagram

𝐺ab
𝐿1
(0+) ⊗Z𝑝𝐾 Q𝑝𝐾 𝑈𝐿1 (1) ⊗Z𝑝𝐾 Q𝑝𝐾 𝐿+1

𝐺ab
𝐿2
(0+) ⊗Z𝑝𝐾 Q𝑝𝐾 𝑈𝐿2 (1) ⊗Z𝑝𝐾 Q𝑝𝐾 𝐿+2

�,Art−1
𝐿1

𝑉1,2⊗id

�,log

⊆⊗ id ⊆
�,Art−1

𝐿2 �,log

(6)

of 𝐺𝑚+1
𝐾 -modules. By passage to the limit, we obtain the desired isomorphism

𝑘𝑚,+(𝐺𝑚+1
𝐾 ) = lim−−→

𝐿/𝐾

(
𝐺ab
𝐿 (0+) ⊗Z𝑝𝐾 Q𝑝𝐾

)
�−→ 𝐾𝑚,+ = lim−−→

𝐿/𝐾
𝐿+,

where 𝐿/𝐾 runs through the finite Galois subextensions of 𝐾𝑚/𝐾 . □

For an infinite algebraic extension 𝐹/𝐾 , we shall denote by 𝒞𝐹 or 𝒞(𝐹) the 𝑝𝐾 -adic completion
of 𝐹, and often write C𝑝𝐾 instead of 𝒞𝐾alg . In [14, Proposition 2.2], it is shown that the isomorphism
class of 𝐺𝐾 -module C+𝑝𝐾 can be recovered group-theoretically from the filtered profinite group 𝐺𝐾 ; we
will prove an “𝑚-step solvable analogue” of this result. To do so, we further assume that 𝐺 is a filtered
profinite group of MLF𝑚+1-type for an integer 𝑚 ≥ 1, i.e., there exists an isomorphism 𝛼filt : 𝐺 → 𝐺𝑚+1

𝐾
of filtered profinite groups for some mixed-characteristic local field 𝐾 .

For any closed normal subgroup 𝑁 of 𝐺, we shall equip 𝐺/𝑁 with the filtration defined by

(𝐺/𝑁) (𝑣) := 𝐺 (𝑣)𝑁/𝑁

for each 𝑣 ≥ 0.
Suppose that 𝐻 ∈ ℋ𝑚(𝐺). Then there exists a finite Galois subextension 𝐿/𝐾 of 𝐾𝑚/𝐾 such that

𝛼filt(𝐻) = Gal(𝐾𝑚+1/𝐿). We define the functions 𝜙𝐻 , 𝜓𝐻 : [0,+∞) → [0,+∞) by

𝜓𝐻 (𝑣) :=
∫ 𝑣

0
((𝐺/𝐻) : (𝐺/𝐻)(𝑤)) 𝑑𝑤,

𝜙𝐻 (𝑤) := 𝜓−1
𝐻 (𝑤).

We regard 𝐻 as a filtered profinite group by setting

𝐻 (𝑤) := lim←−−
𝑁

{(𝐻/𝑁) ∩ (𝐺/𝑁)(𝜙𝐻 (𝑤))}
(
⊆ 𝐻 = lim←−−

𝑁

(𝐻/𝑁)
)

for each 𝑤 ≥ 0, where 𝑁 runs through the open subgroups of 𝐻 such that 𝑁 ⊴𝐺. As a direct consequence
of Theorem 4.1, 𝛼filt |𝐻 : 𝐻 → Gal(𝐾𝑚+1/𝐿) is an isomorphism of filtered profinite groups.

We denote by 𝑈 (𝐻, 𝑤) the image of 𝐻 (𝑤) under the natural map 𝐻 ↠ 𝐻ab. Then we see that 𝐺
acts on 𝑈 (𝐻, 𝑤) by conjugation. We claim that, for 𝐻1, 𝐻2 ∈ ℋ𝑚(𝐺) with 𝐻1 ⊇ 𝐻2, the transfer map
Ver : 𝐻ab

1 → 𝐻ab
2 restricts to

𝑈 (𝐻1, 𝜀(𝐺)𝑒(𝐻ab
1 )) → 𝑈 (𝐻2, 𝜀(𝐺)𝑒(𝐻ab

2 )),
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and that if we denote by𝑈′(𝐻) the group𝑈 (𝐻, 𝜀(𝐺)𝑒(𝐻ab)) for each 𝐻 ∈ℋ𝑚(𝐺),

{𝑈′(𝐻)}𝐻∈ℋ𝑚 (𝐺)

forms a direct system of 𝐺-modules, together with 𝑉 ′1,2 := Ver |𝑈′ (𝐻1 ) : 𝑈′(𝐻1) → 𝑈′(𝐻2) for each pair
𝐻1 ⊇ 𝐻2. Suppose that, for each □ ∈ {1, 2}, the image of 𝐻□ equals Gal(𝐾𝑚+1/𝐿□), where 𝐿□/𝐾 is a
finite Galois subextension of 𝐾𝑚/𝐾 . Then the isomorphism 𝛼filt

□ : 𝐻ab
□ → Gal(𝐾𝑚+1/𝐿□)ab induced by

𝛼filt fits into the following commutative diagram:

𝐻ab
1 Gal(𝐾𝑚+1/𝐿1)ab = 𝐺ab

𝐿1
𝐿×1

𝐻ab
2 Gal(𝐾𝑚+1/𝐿2)ab = 𝐺ab

𝐿2
𝐿×2

�,𝛼filt
1

Ver Ver

Art𝐿1

⊆
�,𝛼filt

2 Art𝐿2

As we have seen above, 𝐻□(𝑤) is mapped onto Gal(𝐾𝑚+1/𝐿□)(𝑤) under 𝛼filt |𝐻□ for all 𝑤 ≥ 0; thus
𝑈′(𝐻□) ⊆ 𝐻ab

□ is mapped onto 𝐺ab
𝐿□
(𝜀(𝐺)𝑒(𝐻ab

□ )) under 𝛼filt
□ . Therefore, in order to prove the claim, it

suffices to show that the middle vertical arrow restricts to

𝐺ab
𝐿1
(𝜀𝐾𝑒𝐿1) → 𝐺ab

𝐿2
(𝜀𝐾𝑒𝐿2).

We have
𝔭
𝜀𝐾𝑒𝐿1
𝐿1

⊆
(
𝔭𝐿1𝒪𝐿2

) 𝜀𝐾𝑒𝐿1 =
(
𝔭
𝑒𝐿2/𝑒𝐿1
𝐿2

) 𝜀𝐾𝑒𝐿1
= 𝔭

𝜀𝐾𝑒𝐿2
𝐿2

,

and it follows that 𝑈𝐿1 (𝜀𝐾𝑒𝐿1) ⊆ 𝑈𝐿2 (𝜀𝐾𝑒𝐿2). Together with the fact that Art𝐿□ restricts to an isomor-
phism𝑈𝐿□ (𝑤) → 𝐺ab

𝐿□
(𝑤) for all 𝑤 ≥ 0 [20, p. 155, Theorem 1], we conclude that

Ver(𝐺ab
𝐿1
(𝜀𝐾𝑒𝐿1)) = Ver(Art𝐿1 (𝑈𝐿1 (𝜀𝐾𝑒𝐿1))) ⊆ Art𝐿2 (𝑈𝐿2 (𝜀𝐾𝑒𝐿2)) = 𝐺ab

𝐿2
(𝜀𝐾𝑒𝐿2).

Therefore, we obtain a direct system {𝑈′(𝐻)}𝐻∈ℋ𝑚 (𝐺) of𝐺-modules in a way similar to the way in which
we obtained {𝑈 (𝐻)}𝐻∈ℋ𝑚 (𝐺) . We again put 𝑝 := 𝑝(𝐺ab) = 𝑝𝐾 . Note that, for each 𝐻 ∈ℋ𝑚(𝐺) and the
subextension 𝐿/𝐾 fixed by 𝛼filt(𝐻), the natural map𝑈𝐿 (𝜀𝐾𝑒𝐿) → 𝑈𝐿 (1) ⊗Z𝑝 Q𝑝 (and hence the natural
map 𝑈′(𝐻) → 𝑈 (𝐻) ⊗Z𝑝 Q𝑝) is injective since 𝑈𝐿 (𝜀𝐾𝑒𝐿) is contained in the non-torsion part of 𝑈𝐿
(as 𝜀𝐾𝑒𝐿 > 𝑒𝐿/(𝑝 − 1) and the 𝑝-adic logarithm restricts to an isomorphism𝑈𝐿 (𝜀𝐾𝑒𝐿) → 𝔭𝜀𝐾𝑒𝐿𝐿 ). We
identify𝑈′(𝐻) with a submodule of𝑈 (𝐻) ⊗Z𝑝 Q𝑝; we set

𝒪+𝑘𝑚 (𝐺) := 𝑝−𝜀 (𝐺)
©« lim−−→
𝐻∈ℋ𝑚 (𝐺)

𝑈′(𝐻)ª®¬ ©«⊆ 𝑘𝑚,+(𝐺) = lim−−→
𝐻∈ℋ𝑚 (𝐺)

(
𝑈 (𝐻) ⊗Z𝑝 Q𝑝

)ª®¬ ,
𝒞+𝑘𝑚 (𝐺) :=

(
lim←−−
𝑛

(
𝒪+𝑘𝑚 (𝐺)/𝑝𝑛𝒪+𝑘𝑚 (𝐺)

))
⊗Z𝑝 Q𝑝 .

Proposition 6.3. Let 𝐾 be a mixed-characteristic local field, and let 𝑚 be an integer ≥ 1. Then the
isomorphism of Theorem 6.2 restricts to an isomorphism

𝒪+𝑘𝑚 (𝐺𝑚+1
𝐾 ) �−→ 𝒪+𝐾𝑚

of 𝐺𝑚+1
𝐾 -modules, where 𝒪𝐾𝑚 denotes the integral closure of 𝒪𝐾 in 𝐾𝑚. In particular, there exists an

isomorphism
𝒞+𝑘𝑚 (𝐺𝑚+1

𝐾 ) �−→ 𝒞+𝐾𝑚

of 𝐺𝑚+1
𝐾 -modules. ⋄
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Speaking from an intuitive level, the𝐺𝑚+1
𝐾 -module𝒞+𝐾𝑚 can be recovered entirely group-theoretically

from the filtered profinite group 𝐺𝑚+1
𝐾 .

Proof. Let 𝐻□ = Gal(𝐾𝑚+1/𝐿□) ∈ ℋ𝑚(𝐺𝑚+1
𝐾 ) for each □ ∈ {1, 2}, and assume that 𝐻1 ⊇ 𝐻2. By

construction, we have 𝑈′(𝐻□) = 𝐺ab
𝐿□
(𝜀𝐾𝑒𝐿□). Under the isomorphism Art−1

𝐿□
: 𝐺ab

𝐿□
(0+) → 𝑈𝐿□ (1),

the subgroup 𝐺ab
𝐿□
(𝜀𝐾𝑒𝐿□) is mapped onto 𝑈𝐿□ (𝜀𝐾𝑒𝐿□), which is again mapped onto 𝔭𝜀𝐾𝑒𝐿□𝐿□

= 𝑝𝜀𝐾𝐾 𝒪+𝐿□
under the 𝑝𝐾 -adic logarithm

𝑈𝐿□ (1) ⊗Z𝑝𝐾 Q𝑝𝐾

�,log
−−−−→ 𝐿+□.

Hence we have the following commutative diagram

𝐺ab
𝐿1
(𝜀𝐾𝑒𝐿1) 𝑈𝐿1 (𝜀𝐾𝑒𝐿1) 𝑝𝜀𝐾𝐾 𝒪+𝐿1

𝐺ab
𝐿2
(𝜀𝐾𝑒𝐿2) 𝑈𝐿2 (𝜀𝐾𝑒𝐿2) 𝑝𝜀𝐾𝐾 𝒪+𝐿2

�,Art−1
𝐿1

𝑉 ′1,2

�,log

⊆ ⊆
�,Art−1

𝐿2 �,log

of 𝐺𝑚+1
𝐾 -modules, which is compatible with the above commmutative diagram (6). By passage to the

limit, we see that the isomorphism of Theorem 6.2 restricts to the isomorphism

𝑝𝜀𝐾𝐾 𝒪+𝑘𝑚 (𝐺𝑚+1
𝐾 ) = lim−−→

𝐿/𝐾
𝐺ab
𝐿 (𝜀𝐾𝑒𝐿)

�−→ 𝑝𝜀𝐾𝐾 𝒪+𝐾𝑚 = lim−−→
𝐿/𝐾

𝑝𝜀𝐾𝐾 𝒪+𝐿 ,

where 𝐿/𝐾 runs through the finite Galois subextensions of 𝐾𝑚/𝐾 . Therefore, we obtain the desired
isomorphism, by multiplying both sides by 𝑝−𝜀𝐾𝐾 . □

7 Abelian 𝑝-adic representations
Hodge-Tate numbers
Let 𝐺 be a profinite group, and (𝜌,𝑉) an ℓ-adic representation of 𝐺 for a prime number ℓ. For an ℓ-adic
character 𝜒 : 𝐺 → Z×ℓ , we shall write Zℓ (𝜒) for the Zℓ-representation (𝜒,Z+ℓ ) of 𝐺, and 𝑉 (𝜒) for the
ℓ-adic representation 𝑉 ⊗Qℓ (Qℓ ⊗Zℓ Zℓ (𝜒)) of 𝐺.

Let 𝐾 be a mixed-characteristic local field. Recall that, for a 𝑝𝐾 -adic representation (𝜌,𝑉) of 𝐺𝐾
and an integer 𝑖, the 𝑖th Hodge-Tate number 𝑑𝑖HT,𝐾 (𝜌,𝑉) of (𝜌,𝑉) is the dimension of the 𝐾-vector space(

C𝑝𝐾 ⊗Q𝑝𝐾 𝑉 (−𝑖)
)𝐺𝐾

,

where 𝑉 (−𝑖) = (𝜌(−𝑖), 𝑉 (−𝑖)) denotes the (−𝑖)th Tate twist 𝑉 (𝜒−𝑖𝐾 ) of 𝑉 . From the theory of 𝑝-adic
representations, it is known that ∑

𝑖∈Z
𝑑𝑖HT,𝐾 (𝜌,𝑉) ≤ dimQ𝑝𝐾 (𝑉),

and we say that (𝜌,𝑉) is Hodge-Tate when the equality holds (cf. [5, §5.1]).

Lemma 7.1. Let (𝜌,𝑉) be a 𝑝𝐾 -adic representation of 𝐺𝐾 . Then we have(
C𝑝𝐾 ⊗Q𝑝𝐾 𝑉

)𝐺𝐾
=

(
𝒞((𝐾alg)Ker (𝜌) ) ⊗Q𝑝𝐾 𝑉

)𝐺𝐾
. (7)

⋄
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Proof. We choose a basis 𝑣1, . . . , 𝑣𝑛 of 𝑉 . For each 𝜎 ∈ 𝐺𝐾 , we shall write (𝑎𝑖 𝑗 (𝜎)) ∈ GL𝑛 (Q𝑝𝐾 ) for
the matrix of the linear transformation 𝜌𝜎 := 𝜌(𝜎) with respect to the basis 𝑣1, . . . , 𝑣𝑛, so that

(𝜌𝜎 (𝑣1) · · · 𝜌𝜎 (𝑣𝑛)) = (𝑣1 · · · 𝑣𝑛)(𝑎𝑖 𝑗 (𝜎)).

Suppose that 𝑐1, . . . , 𝑐𝑛 ∈ C𝑝𝐾 , and that 𝑐1 ⊗ 𝑣1 + · · · + 𝑐𝑛 ⊗ 𝑣𝑛 belongs to the left hand side of (7).
Then for all 𝜎 ∈ 𝐺𝐾 ,

𝑐1 ⊗ 𝑣1 + · · · + 𝑐𝑛 ⊗ 𝑣𝑛 = 𝜎(𝑐1) ⊗ 𝜌𝜎 (𝑣1) + · · · + 𝜎(𝑐𝑛) ⊗ 𝜌𝜎 (𝑣𝑛)

= ©«
𝑛∑
𝑗=1

𝜎(𝑐 𝑗)𝑎1 𝑗 (𝜎)ª®¬ ⊗ 𝑣1 + · · · + ©«
𝑛∑
𝑗=1

𝜎(𝑐 𝑗)𝑎𝑛 𝑗 (𝜎)ª®¬ ⊗ 𝑣𝑛,
and hence ©«

𝑐1
...
𝑐𝑛

ª®®¬ = (𝑎𝑖 𝑗 (𝜎))
©«
𝜎(𝑐1)
...

𝜎(𝑐𝑛)

ª®®¬ .
In particular, we have

𝑐1 ⊗ 𝑣1 + · · · + 𝑐𝑛 ⊗ 𝑣𝑛 ∈ CKer (𝜌)
𝑝𝐾 ⊗Q𝑝𝐾 𝑉 = 𝒞((𝐾alg)Ker (𝜌) ) ⊗Q𝑝𝐾 𝑉,

since it holds that 𝜎(𝑐1) = 𝑐1, . . . , 𝜎(𝑐𝑛) = 𝑐𝑛 for all 𝜎 ∈ Ker (𝜌). (Note that, for any closed subgroup
𝐻 of 𝐺𝐾 ,

C𝐻𝑝𝐾 = 𝒞((𝐾alg)𝐻)
by the theorem of Ax-Sen-Tate—cf. [22], [3], [5, Chap. 3].) □

Definition 7.2. Let 𝐺 be a profinite group, and let (𝜌,𝑉) be an ℓ-adic representation of 𝐺 for a prime
number ℓ. We shall say that (𝜌,𝑉) is an 𝑚-step solvable ℓ-adic representation of 𝐺 for an integer 𝑚 ≥ 0
if 𝜌 annihilates 𝐺 [𝑚] . We shall also say that (𝜌,𝑉) is abelian (resp. metabelian) if it is a 1-step (resp.
2-step) solvable ℓ-adic representation of 𝐺. ⋄

Let 𝐺 be a filtered profinite group of MLF𝑚+1-type for an integer 𝑚 ≥ 1; we set 𝑝 := 𝑝(𝐺ab). Let
(𝜌,𝑉) and 𝜒 be a 𝑝-adic representation and a 𝑝-adic character of 𝐺, respectively. We shall write

𝑑𝑖HT,𝑚(𝐺, 𝜒, 𝜌,𝑉) := dimQ𝑝

(
𝒞+𝑘𝑚 (𝐺) ⊗Q𝑝 𝑉 (𝜒−𝑖)

)𝐺
/𝑑 (𝐺ab)

for each 𝑖 ∈ Z.

Proposition 7.3. Let 𝐾 be a mixed-characteristic local field, and let𝑚 be an integer≥ 1. Given an𝑚-step
solvable 𝑝𝐾 -adic representation (𝜌,𝑉) of 𝐺𝐾 , it holds that

𝑑𝑖HT,𝑚(𝐺𝑚+1
𝐾 , 𝜒(𝐺mab

𝐾 ), 𝜌,𝑉) = 𝑑𝑖HT,𝐾 (𝜌,𝑉)

for each 𝑖 ∈ Z. ⋄

Intuitively speaking, the 𝑖th Hodge-Tate number of such (𝜌,𝑉) (and hence the issue of whether or not
such (𝜌,𝑉) is Hodge-Tate) can be determined group-theoretically from the filtered profinite group 𝐺𝑚+1

𝐾
and its action on 𝑉 .

Proof. We have

𝑑𝑖HT,𝑚(𝐺𝑚+1
𝐾 , 𝜒(𝐺mab

𝐾 ), 𝜌,𝑉) = dimQ𝑝𝐾

(
𝒞(𝐾𝑚) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
/𝑑𝐾

= dim𝐾

(
𝒞(𝐾𝑚) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
18



from Theorems 5.1, 5.2 and 6.3. Since both 𝜌 and 𝜒𝐾 annihilates 𝐺 [𝑚]𝐾 , we see that(
C𝑝𝐾 ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
⊇

(
𝒞(𝐾𝑚) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
⊇

(
𝒞((𝐾alg)Ker (𝜌(−𝑖) ) ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
,

and deduce the desired equality from Theorem 7.1. □

Uniformizing representations
Let (𝜌,𝑉) be a 𝑝𝐾 -adic representation of𝐺𝐾 for a mixed-characteristic local field 𝐾 , and 𝐸/𝐾 a finite ex-
tension such that 𝐸/Q𝑝𝐾 is Galois. Suppose that𝑉 is an 𝐸-vector space of dimension 1 and the𝐺𝐾 -action
on 𝑉 is 𝐸-linear. Then we see that 𝜌 : 𝐺𝐾 → AutQ𝑝𝐾 (𝑉) factors through 𝜌 : 𝐺ab

𝐾 → 𝐸×. In particular,
(𝜌,𝑉) is an abelian representation. We say that a representation (𝜌,𝑉) of this type is uniformizing if
there exist an open subgroup 𝐼 ⊆ 𝑈𝐾 and a field homomorphism 𝜄 : 𝐾 → 𝐸 such that

(𝜌 ◦ Art𝐾 ) |𝐼 = 𝜄× |𝐼 ,

where 𝜄× : 𝐾× → 𝐸× is the group homomorphism induced by 𝜄.

Example 7.4. Given any finite extension 𝐸/𝐾 such that 𝐸/Q𝑝𝐾 is Galois, 𝑉 = 𝐸+ can be regarded as a
uniformizing representation by local class field theory. More precisely, we define the 𝐺𝐾 -action on 𝑉 via
the composition

𝜌 : 𝐺ab
𝐾

Ver−−→ 𝐺ab
𝐸 (� 𝐺ab

𝐸 (0) ⊕ Gal(𝐸un/𝐸) ) ↠ 𝐺ab
𝐸 (0) → 𝑈𝐸

of continuous homomorphisms, where the second (resp. third) arrow is the natural surjection (resp. the
isomorphism Art−1

𝐸 ). ⋄

Proposition 7.5. Let 𝐾 be a mixed-characteristic local field, and let 𝐸/𝐾 be a finite extension such that
𝐸/Q𝑝𝐾 is Galois. Suppose that (𝜌,𝑉) is an 𝐸-linear representation of 𝐺𝐾 , of 𝐸-dimension 1. Then
(𝜌,𝑉) is a uniformizing representation if and only if

𝑑𝑖HT,𝐾 (𝜌,𝑉) =
{
[𝐸 : 𝐾] ( [𝐾 : Q𝑝𝐾 ] − 1) 𝑖 = 0
[𝐸 : 𝐾] 𝑖 = 1

.

⋄

Proof. cf. [19, Chap. III, A5], [14, §3]. □

Corollary 7.6. Let 𝐾◦ and 𝐾• be mixed-characteristic local fields, 𝛼2 : 𝐺mab
𝐾◦
→ 𝐺mab

𝐾•
an isomorphism

of filtered profinite groups. Suppose that 𝐸/Q𝑝𝐾◦ (= Q𝑝𝐾• ) is a finite Galois extension containing both
𝐾◦ and 𝐾•, and that (𝜌,𝑉) is an 𝐸-linear representation of 𝐺𝐾◦ , of 𝐸-dimension 1. Then (𝜌 ◦ 𝛼−1

1 , 𝑉) is
a uniformizing representation of 𝐺𝐾• if and only if (𝜌,𝑉) is a uniformizing representation of 𝐺𝐾◦ , where
𝛼1 : 𝐺ab

𝐾◦
→ 𝐺ab

𝐾•
is the isomorphism induced by 𝛼2. ⋄

Proof. It follows immediately from Theorems 7.3 and 7.5. □

8 Proofs of the main theorems
Lemma 8.1 ([14, Lemma 4.1]). Let 𝐾 be a mixed-characteristic local field, and 𝐼 an open subgroup of
𝑈𝐾 . Then the sub-Q𝑝𝐾 -vector space generated by 𝐼 in 𝐾 equals 𝐾 . ⋄
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Proof. We denote by 𝑊 the sub-Q𝑝𝐾 -vector space generated by 𝐼 in 𝐾 . First, observe that 𝐼 is an open
subset of 𝐾 , since 𝑈𝐾 is open in 𝐾 . Then note that, for each 𝑤 ∈ 𝑊 , 𝑤 + 𝐼 ⊆ 𝑊 ; hence 𝑊 is also an
open subgroup of 𝐾 . Therefore, the Q𝑝𝐾 -vector space 𝐾/𝑊 (� Q⊕𝑑𝑝𝐾 , where 𝑑 = 𝑑𝐾 − dimQ𝑝𝐾 (𝑊)) is
discrete, meaning that 𝑑𝐾 = dimQ𝑝𝐾 (𝑊). □

Proof of Theorem 2.4. We denote by 𝛼1 the isomorphism 𝐺ab
𝐾◦
→ 𝐺ab

𝐾•
induced by 𝛼2. We set 𝑝 :=

𝑝𝐾◦ = 𝑝𝐾• , and choose a finite Galois extension 𝐸/Q𝑝 that contains both 𝐾◦ and 𝐾•. As we have
seen in Theorem 7.4, we have the natural uniformizing representation (𝜌◦, 𝑉 := 𝐸+) of 𝐺𝐾◦ ; it is clear
from Theorem 7.6 that (𝜌• := 𝜌◦ ◦ 𝛼−1

1 , 𝑉) is also a uniformizing representation of 𝐺𝐾• . Hence there
exist an open subgroup 𝐼◦ (resp. 𝐼•) of 𝑈𝐾◦ (resp. 𝑈𝐾•) and a field homomorphism 𝜄◦ : 𝐾◦ → 𝐸 (resp.
𝜄• : 𝐾• → 𝐸) such that 𝛼1(𝐼◦) = 𝐼• and the diagram

𝐾×◦

𝐼◦ 𝑈𝐾◦ 𝐺ab
𝐾◦

𝐸×

𝐼• 𝑈𝐾• 𝐺ab
𝐾•

𝐸×

𝐾×•

�,𝛼1�,𝛼1 |𝐼◦

𝜌◦

𝜌•

𝜄×◦

𝜄×•

⊆

⊆

�,𝛼1 |𝑈𝐾◦
Art𝐾•

⊆ Art𝐾◦

⊆

commutes. In particular, 𝜄• |𝐼• ◦ 𝛼1 |𝐼◦ = 𝜄◦ |𝐼◦ , and by Theorem 8.1, 𝜄◦(𝐾◦) = 𝜄•(𝐾•) in 𝐸 . Therefore, we
have the following field isomorphism:

𝑓 : 𝐾◦
�, 𝜄◦−−−→ 𝜄◦(𝐾◦) = 𝜄•(𝐾•)

�, 𝜄−1
•−−−−→ 𝐾•.

□

Proof of Theorem 2.5. We keep the notation and hypotheses of the proof of Theorem 2.4.

Existence. We suppose that, for each 𝑖 ∈ {1, 2},

• 𝐿𝑖,□ is a finite Galois extension of 𝐾□ contained in 𝐾𝑚+1
□ for each □ ∈ {◦, •};

• 𝐻𝑖,□ = Gal(𝐾𝑚+3
□ /𝐿𝑖,□) (⊇ (𝐺𝑚+3

𝐾□
) [𝑚+1]) for each □ ∈ {◦, •};

• 𝐻𝑖,• = 𝛼𝑚+3(𝐻𝑖,◦),

and that 𝐿1,◦ ⊆ 𝐿2,◦. Then 𝛼𝑚+3 |𝐻𝑖,◦ : 𝐻𝑖,◦ → 𝐻𝑖,• is an isomorphism of filtered profinite groups by
Theorem 4.1. Hence 𝛼𝑚+3 |𝐻𝑖,◦ induces an isomorphism 𝛼2,𝑖 : 𝐺mab

𝐿𝑖,◦
= 𝐻mab

𝑖,◦ → 𝐺mab
𝐿𝑖,•

= 𝐻mab
𝑖,• of filtered

profinite groups. As we have seen in the proof of Theorem 2.4, there exist an open subgroup 𝐼𝑖,◦ (resp.
𝐼𝑖,•) of 𝑈𝐿𝑖,◦ (resp. 𝑈𝐿𝑖,•) and a field isomorphism 𝜃𝐿𝑖,◦ : 𝐿𝑖,◦ → 𝐿𝑖,• such that 𝛼1,𝑖 (𝐼𝑖,◦) = 𝐼𝑖,• and 𝜃𝐿𝑖,◦
(set-theoretically) extends the group isomorphism 𝛼1,𝑖 |𝐼𝑖,◦ : 𝐼𝑖,◦ → 𝐼𝑖,•, where 𝛼1,𝑖 : 𝐺ab

𝐿𝑖,◦
→ 𝐺ab

𝐿𝑖,•
is the

isomorphism induced by 𝛼2,𝑖 . We can assume without loss of generality that 𝐼1,◦ ⊆ 𝐼2,◦, replacing 𝐼1,◦
with 𝐼1,◦ ∩ 𝐼2,◦ if necessary; the diagram

𝐼1,◦ 𝐼2,◦

𝐼1,• 𝐼2,•

⊆

𝛼1,1 |𝐼1,◦ 𝛼1,2 |𝐼2,◦
⊆

commutes by definition. It follows immediately from Theorem 8.1 that 𝜃𝐿2,◦ restricts to 𝜃𝐿1,◦ ; by passage
to the limit, we obtain

𝜃𝑚+1 : 𝐾𝑚+1
◦ → 𝐾𝑚+1

• .
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It remains to check that 𝜃𝑚+1 satisfies the stated condition: Assume without loss of generality that
𝐼𝑖,□ is 𝐺𝐾□-stable for each □ ∈ {◦, •}. By Theorem 8.1, it is reduced to showing that, for all 𝛾◦ ∈ 𝐺𝑚+3

𝐾◦
and 𝑥 ∈ 𝐼𝑖,◦,

𝛼1,𝑖 (𝛾◦(𝑥)) (= 𝜃𝐿𝑖,◦ (𝛾◦(𝑥)) ) = 𝛾•(𝛼1,𝑖 (𝑥)) (= 𝛾•(𝜃𝐿𝑖,◦ (𝑥)) ),
where 𝛾• = 𝛼𝑚+3(𝛾◦). This holds since we are regarding 𝐼𝑖,□ as a subgroup of 𝐺ab

𝐿𝑖,□
via Art𝐿𝑖,□ , and

𝛼1,𝑖 (𝛾◦ |𝐿ab
𝑖,◦
◦ 𝜎 ◦ 𝛾−1

◦ |𝐿ab
𝑖,◦
) = 𝛾• |𝐿ab

𝑖,•
◦ 𝛼1,𝑖 (𝜎) ◦ 𝛾−1

• |𝐿ab
𝑖,•

for all 𝜎 ∈ 𝐺ab
𝐿𝑖,◦

.

Uniqueness. Suppose that both isomorphisms 𝜃𝑚+1,1, 𝜃𝑚+1,2 : 𝐾𝑚+1
◦ → 𝐾𝑚+1

• satisfy the condition. Then
there exist isomorphisms 𝜃1, 𝜃2 : 𝐾alg

◦ → 𝐾
alg
• that respectively extend 𝜃𝑚+1,1, 𝜃𝑚+1,2; we have

( 𝛾 :=) (𝜃2)−1 ◦ 𝜃1 ∈ Gal(𝐾alg
◦ /Q𝑝)

and

𝛾 |𝐾𝑚+1
◦
◦ 𝜎 ◦ 𝛾−1 |𝐾𝑚+1

◦
= (𝜃𝑚+1,2)−1 ◦ 𝜃𝑚+1,1 ◦ 𝜎 ◦ (𝜃𝑚+1,1)−1 ◦ 𝜃𝑚+1,2 = 𝜎, for all 𝜎 ∈ 𝐺𝑚+1

𝐾◦
. (8)

Hence we see that, for all 𝑥 ∈ 𝐾×◦ ,

𝛾 |𝐾ab
◦
◦ Art𝐾◦ (𝑥) ◦ 𝛾−1 |𝐾ab

◦
= Art𝐾◦ (𝑥),

and 𝛾(𝑥) = 𝑥 by local class field theory; it follows that 𝛾 ∈ Gal(𝐾alg
◦ /𝐾◦) (i.e., 𝜃𝑚+1,1 |𝐾◦ = 𝜃𝑚+1,2 |𝐾◦).

Furthermore, 𝛾 |𝐾𝑚+1
◦
∈ 𝑍 (𝐺𝑚+1

𝐾◦
) by (8); together with the fact that 𝑍 (𝐺𝑚+1

𝐾◦
) is trivial for 𝑚 ≥ 1 (cf.

Theorem A.1), we conclude that 𝛾 |𝐾𝑚+1
◦

= 1 (i.e., 𝜃𝑚+1,1 = 𝜃𝑚+1,2) if 𝑚 ≥ 1. □

A Center-freeness of 𝐺𝑚
𝐾 , 𝑚 ≥ 2

This appendix is devoted to the proof of the following proposition.

Proposition A.1. Let 𝐾 be a mixed-characteristic local field. Then

𝑍 (𝐺𝑚+1
𝐾 ) = {1}

for all integer 𝑚 ≥ 1. ⋄

Remark. Theorem A.1 has been originally proved by S. Ladkani [11] for the case 𝑚 = 1. (It is known
that the assertion for general 𝑚 follows from the case 𝑚 = 1 by induction, cf. [18, Proof of Proposition
1.1 (ix)].) In this appendix, we provide an alternative proof of the proposition. ⋄

To prove Theorem A.1, we first give a proof of a weaker statement.

Lemma A.2. Let 𝐾 be a mixed-characteristic local field. Then

𝑍 (𝐺𝑚+1
𝐾 ) ⊆ Gal(𝐾𝑚+1/𝐾𝑚)

for all integer 𝑚 ≥ 0. ⋄

Proof. Suppose that 𝛾 ∈ 𝑍 (𝐺𝑚+1
𝐾 ). Then 𝛾 ◦ 𝜎 ◦ 𝛾−1 = 𝜎 for all 𝜎 ∈ 𝐺𝑚+1

𝐾 . Let 𝐿/𝐾 be a finite Galois
subextension of 𝐾𝑚/𝐾 , so that 𝐿ab ⊆ 𝐾𝑚+1. We see that, for all 𝑥 ∈ 𝐿×,

𝛾 |𝐿ab ◦ Art𝐿 (𝑥) ◦ 𝛾−1 |𝐿ab = Art𝐿 (𝑥),

and 𝛾(𝑥) = 𝑥 by local class field theory. Therefore, 𝛾 ∈ Gal(𝐾𝑚+1/𝐿), and the assertion follows as the
subextension 𝐿/𝐾 is arbitrary. □
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Remark. For the case in which the base field is torally Kummer-faithful (cf., e.g., [15, Definition 1.5], for
the definition of (torally) Kummer-faithful fields), a claim similar to that of Theorem A.2 holds: Let 𝑘 be
a torally Kummer-faithful field, and 𝑚 an integer ≥ 0. Then

𝑍 (𝐺𝑚+1
𝑘 ) ∩ Ker (𝜒cycl,𝑘 : 𝐺𝑚+1

𝑘 → (Ẑ×/𝑘)×) ⊆ Gal(𝑘𝑚+1/𝑘𝑚)

holds. (Compare [8, Proposition 1.5].)
There is nothing to show if 𝑚 = 0. For the case 𝑚 ≥ 1, we give a proof by contradiction. Assume

that there exists an element 𝛾 ∈ 𝑍 (𝐺𝑚+1
𝑘 ) ∩ Ker (𝜒cycl,𝑘) which does not belong to Gal(𝑘𝑚+1/𝑘𝑚); let

�̃� ∈ 𝐺𝑘 be a lifting of 𝛾. Then we can choose a finite Galois subextension 𝑙/𝑘 of 𝑘𝑚/𝑘 , such that the
corresponding open normal subgroup Gal(𝑘𝑚+1/𝑙) does not contain 𝛾.

Since 𝑘 is torally Kummer-faithful, we have the injective homomorphism

𝑙× → lim←−−
𝑛

𝑙×/(𝑙×)𝑛 � 𝐻1(𝐺𝑙, lim←−−
𝑛

𝜇𝑛 (𝑘sep))

of𝐺𝑘-modules. (𝑛 runs through the integers ≥ 1 whose prime factors belong to 𝔓𝔯𝔦𝔪𝔢𝔰×/𝑘 .) We deduce
a contradiction by claiming that �̃� acts trivially on 𝐻1(𝐺𝑙, lim←−−𝑛 𝜇𝑛 (𝑘

sep)), and hence on 𝑙×.
For all 𝜎 ∈ 𝐺𝑙, we have

(𝜉𝜎 :=) 𝜎−1�̃�−1𝜎�̃� ∈ 𝐺 [𝑚+1]
𝑘 (⊆ 𝐺 [𝑚]𝑘 ⊆ 𝐺𝑙),

since 𝛾 ∈ 𝑍 (𝐺𝑚+1
𝑘 ). On the other hand, the action of �̃� on 𝐻1(𝐺𝑙, 𝜇𝑛 (𝑘sep)) for each 𝑛 is determined as

follows: For each 1-cocycle (i.e., crossed homomorphism) 𝜔 : 𝐺𝑙 → 𝜇𝑛 (𝑘sep),

�̃�𝜔(−) = �̃� · 𝜔(�̃�−1 · − · �̃�) = 𝜔(�̃�−1 · − · �̃�).

Therefore, it suffices to show that

�̃�𝜔(−)/𝜔(−) = 𝜔(�̃�−1 · − · �̃�)/𝜔(−) = 𝜔(− · 𝜉 (−) )/𝜔(−) = (−) · 𝜔(𝜉 (−) )

is a 1-coboundary. This is straightforward, since it holds that𝜔(𝜉) = 1 for all 1-cocycle𝜔 and 𝜉 ∈ 𝐺 [𝑚+1]
𝑘 ,

which follows from the fact that 𝜔|
𝐺
[𝑚]
𝑘

is a group homomorphism (as 𝐺 [𝑚]𝑘 acts trivially on 𝜇𝑛 (𝑘sep)). ⋄

Lemma A.3. Let 𝐾 be a mixed-characteristic local field, and let 𝐿/𝐾 be a finite extension with inclusion
map 𝜄 : 𝐾 → 𝐿.

(1) The group homomorphism 𝜄× : 𝐾× → 𝐿× is injective.

(2) The transfer map Ver : 𝐺ab
𝐾 → 𝐺ab

𝐿 is injective.

(3) It holds that (𝐿×)𝐺𝐾 = 𝐾×.

⋄

Proof. (1) We set 𝑒 := 𝑒𝐿/𝑒𝐾 . We consider the following commutative diagram (of abelian groups) with
exact rows:

1 𝑈𝐾 𝐾× Z+ 1

1 𝑈𝐿 𝐿× Z+ 1

ord𝐾

𝜄× 𝑒· (−)
ord𝐿

. (9)
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By profinite completion, we obtain the following commutative diagram, in which all rows are exact:

1 𝑈𝐾 𝐾× Z+ 1

1 𝑈𝐿 𝐿× Z+ 1

1 𝑈𝐾 𝐾× Ẑ+ 1

1 𝑈𝐿 𝐿× Ẑ+ 1

𝜄× 𝑒· (−)

�̂�× 𝑒· (−)

. (10)

Since 𝑒 is not a zero-divisor in Ẑ, we can conclude that the map 𝜄× : 𝐾× → 𝐿× is injective.
(2) Art𝐾 and Art𝐿 respectively induce the isomorphisms �Art𝐾 : 𝐾× → 𝐺ab

𝐾 and �Art𝐿 : 𝐿× → 𝐺ab
𝐿

(cf. p. 11); these fit into the following commutative diagram:

𝐾× 𝐺ab
𝐾

𝐿× 𝐺ab
𝐿

�

�̂�× Ver

�

.

Hence the injectivity of Ver is implied by that of 𝜄×, which we have already seen in (1).
(3) By (1), we can assume without loss of generality that 𝐿/𝐾 is a finite Galois extension, with Galois

group 𝐺 = Gal(𝐿/𝐾). Then it follows that (9) and (10) are also commutative diagrams of 𝐺-modules; in
(10), we see that the second and fourth rows from the top induce the long exact sequences, and make the
following diagram commutative:

1 𝑈𝐾 𝐾× Z+ 𝐻1(𝐺,𝑈𝐿) 𝐻1(𝐺, 𝐿×)

1 𝑈𝐾 (𝐿×)𝐺 Ẑ+ 𝐻1(𝐺,𝑈𝐿) 𝐻1(𝐺, 𝐿×)

ord𝐿 |𝐾× 𝛿

𝛿

.

The connecting homomorphism 𝛿 : Z+ → 𝐻1(𝐺,𝑈𝐿) induces the injective homomorphism

( Coker (ord𝐿 |𝐾× ) =) (Z/𝑒Z)+ → 𝐻1(𝐺,𝑈𝐿),

—which is an isomorphism by Hilbert’s Theorem 90—and as a result, 𝑒Ẑ+ is annihilated by 𝛿 : Ẑ+ →
𝐻1(𝐺,𝑈𝐿). Therefore, the diagram

1 𝑈𝐾 𝐾× Ẑ+ 1

1 𝑈𝐾 (𝐿×)𝐺 Ẑ+ 𝐻1(𝐺,𝑈𝐿)

𝑒· (−)

𝛿

with exact rows commutes, and yields the exact sequence of cokernels:

1→ (𝐿×)𝐺/𝐾× → (Ẑ/𝑒Ẑ)+ �−→ 𝐻1(𝐺,𝑈𝐿).

Hence (𝐿×)𝐺 = 𝐾×. □
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Proof of Theorem A.1. By definition, 𝑍 (𝐺𝑚+1
𝐾 ) is precisely the set of 𝐺𝐾 -invariant elements in 𝐺𝑚+1

𝐾 , if
we let 𝐺𝐾 act on 𝐺𝑚+1

𝐾 by conjugation. Hence it follows from Theorem A.2 that

𝑍 (𝐺𝑚+1
𝐾 ) = Gal(𝐾𝑚+1/𝐾𝑚)𝐺𝐾 .

To demonstrate that Gal(𝐾𝑚+1/𝐾𝑚)𝐺𝐾 is trivial, we first note that Gal(𝐾𝑚+1/𝐾𝑚) can be written as an
inverse limit of profinite groups:

Gal(𝐾𝑚+1/𝐾𝑚) = 𝐺 [𝑚]𝐾 /𝐺
[𝑚+1]
𝐾 = (𝐺 [𝑚]𝐾 )

ab

=
©«

⋂
𝐻∈ℋ𝑚 (𝐺𝐾 )

𝐻
ª®¬

ab

=
©« lim←−−
𝐻∈ℋ𝑚 (𝐺𝐾 )

𝐻
ª®¬

ab

= lim←−−
𝐻∈ℋ𝑚 (𝐺𝐾 )

𝐻ab,

whereℋ𝑚(𝐺𝐾 ) is the set of open normal subgroups of𝐺𝐾 containing𝐺 [𝑚]𝐾 , ordered by reverse inclusion.
(For the last equality, cf., e.g., [16, Chap. IV, §2, Exercise 6].) Suppose that 𝐿1/𝐾 , 𝐿2/𝐾 are finite Galois
subextensions of 𝐾𝑚/𝐾 with 𝐿1 ⊆ 𝐿2. It is clear from local class field theory that the diagram

𝐺ab
𝐿1

𝐿×1

𝐺ab
𝐿2

𝐿×2

Art𝐿1

N𝐿2/𝐿1

Art𝐿2

commutes, where the left vertical arrow is induced by the inclusion map 𝐺𝐿2 → 𝐺𝐿1 , and N𝐿2/𝐿1 is the
norm map. We obtain the commutative diagram

𝐺ab
𝐿1

𝐿×1

𝐺ab
𝐿2

𝐿×2

�

�N𝐿2/𝐿1

�

by profinite completion, and the isomorphism

lim←−−
𝐻∈ℋ𝑚 (𝐺𝐾 )

𝐻ab �−→ lim←−−
𝐿/𝐾

𝐿×

which respects the 𝐺𝐾 -action, by taking inverse limits. Hence

Gal(𝐾𝑚+1/𝐾𝑚)𝐺𝐾 � lim←−−
𝐿/𝐾

𝐾× (11)

by Theorem A.3 (3). (Note that the limit is taken over the inverse system in which the homomorphism

(−) [𝐿2:𝐿1 ] : 𝐾× (= (𝐿×2 )
𝐺𝐾 ) → 𝐾× (= (𝐿×1 )

𝐺𝐾 )

is assigned to each pair 𝐿1 ⊆ 𝐿2.)
It remains to show that if 𝑥 = {𝑥𝐿}𝐿/𝐾 belongs to the right hand side of (11), then 𝑥𝐿 = 1 for all

𝐿/𝐾 . This can be verified as follows: For all 𝑛 ≥ 1, we can always find a finite extension 𝐿 (𝑛)/𝐿 such
that [𝐿 (𝑛) : 𝐿] = 𝑛 and 𝐿 (𝑛) ⊆ 𝐾𝑚, e.g.,

𝐿 (𝑛) := 𝐿 (𝜇 |𝔨𝐿 |𝑛−1(𝐾alg)).

Therefore, 𝑥𝐿 = (𝑥𝐿(𝑛) )𝑛 for all 𝑛 ≥ 1, and hence

𝑥𝐿 ∈
⋂
𝑛≥1
(𝐾×)𝑛 = {1},

which proves the claim. □

24



B Notes on pro-𝑝 and pro-𝛴 quotients
Let 𝑘 be a field. For a subset 𝛴 ⊆ 𝔓𝔯𝔦𝔪𝔢𝔰, we denote by 𝑘pro-𝛴 the maximal pro-𝛴 extension of 𝑘 , i.e.,
the subfield of 𝑘sep fixed by the kernel of

𝐺𝑘 ↠ 𝐺
pro-𝛴
𝑘 ,

so that 𝐺pro-𝛴
𝑘 equals Gal(𝑘pro-𝛴 /𝑘). We also denote by 𝑘𝑚, pro-𝛴 the maximal 𝑚-step solvable pro-𝛴

extension of 𝑘 , i.e., the subfield of 𝑘sep fixed by the kernel of

𝐺𝑘 ↠ 𝐺
𝑚, pro-𝛴
𝑘 ,

so that 𝐺𝑚, pro-𝛴
𝑘 equals Gal(𝑘𝑚, pro-𝛴 /𝑘), for an integer 𝑚 ≥ 0. We will often write

𝑘ab, pro-𝛴 (resp. 𝑘mab, pro-𝛴 )

for the maximal abelian (resp. metabelian) pro-𝛴 extension 𝑘1, pro-𝛴 (resp. 𝑘2, pro-𝛴 ) of 𝑘 .
Let 𝐾 be a mixed-characteristic local field. In this appendix, we sharpen several results from §§5 and

6 by presenting explicit group-theoretic algorithms that recover key arithmetic invariants of 𝐾 from

𝐺
𝑚, pro-𝛴𝐾
𝐾 or 𝐺

𝑚, pro-𝛴 ′𝐾
𝐾 ,

where 𝛴𝐾 (resp. 𝛴 ′𝐾 ) is a subset of 𝔓𝔯𝔦𝔪𝔢𝔰 containing all prime factors of 𝑝𝐾 (resp. 𝑝𝐾 (𝑝𝐾 −1)). Then
we conclude this appendix by demonstrating Theorem B.10, which is a refinement of Theorem 2.4.

Definition B.1. Let ★ be an element of {∅, 𝑚, ab,mab}, where 𝑚 is an integer ≥ 0. Let 𝐺 be a profinite
group. We shall say that 𝐺 is a profinite group of

MLF★, pro-𝛴 - (resp. MLF★, pro-𝛴 ′-)

type if there exists an isomorphism of profinite groups between 𝐺 and

𝐺
★, pro-𝛴𝐾
𝐾 (resp. 𝐺★, pro-𝛴 ′𝐾

𝐾 )

for some mixed-characteristic local field 𝐾 and some subset 𝛴𝐾 (resp. 𝛴 ′𝐾 ) of 𝔓𝔯𝔦𝔪𝔢𝔰 containing all
prime factors of 𝑝𝐾 (resp. 𝑝𝐾 (𝑝𝐾 − 1)). We define filtered and 𝐼-filtered profinite groups of

MLF★, pro-𝛴 - (resp. MLF★, pro-𝛴 ′-)

type for a closed interval 𝐼 ⊆ [0,+∞) in a similar way. ⋄

Suppose that 𝐺 is a profinite group of MLFab, pro-𝛴 -type, i.e., there exists an isomorphism

𝐺
�→ 𝐺

ab, pro-𝛴𝐾
𝐾

of profinite groups for some mixed-characteristic local field 𝐾 and some subset 𝛴𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰 containing
𝑝𝐾 . We denote by 𝑝(𝐺) the uniquely determined prime number ℓ such that

logℓ |𝐺/tor/ℓ · 𝐺/tor | ≥ 2

(cf. p. 11). Furthermore, we set:

• 𝜀(𝐺) := 1 (resp. 𝜀(𝐺) := 2) if 𝑝(𝐺) is odd (resp. even);

• 𝑎(𝐺) := log𝑝 (𝐺) | (𝐺 tor)pro-𝑝 (𝐺) |;

• 𝑑 (𝐺) := log𝑝 (𝐺) |𝐺/tor/𝑝(𝐺) · 𝐺/tor | − 1.
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Proposition B.2. Let 𝐾 be a mixed-characteristic local field. We have

𝑝𝐾 = 𝑝(𝐺ab, pro-𝛴𝐾
𝐾 ), 𝜀𝐾 = 𝜀(𝐺ab, pro-𝛴𝐾

𝐾 ), 𝑎𝐾 = 𝑎(𝐺ab, pro-𝛴𝐾
𝐾 ), 𝑑𝐾 = 𝑑 (𝐺ab, pro-𝛴𝐾

𝐾 ),

for any subset 𝛴𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾 . ⋄

Intuitively speaking, 𝑝𝐾 , 𝜀𝐾 , 𝑎𝐾 and 𝑑𝐾 can be recovered entirely group-theoretically from the profi-
nite group 𝐺ab, pro-𝛴𝐾

𝐾 .

Proof. The proof is parallel to that of Theorem 5.1. □

Restoration of the cyclotomic character
Definition B.3.

(1) A mixed-characteristic local field 𝐾 is said to be of 𝑝-cyclotomic type if 𝐾 contains a primitive
(𝑝𝐾 )th root of unity.

(2) Let ★ be an element of {∅, 𝑚, ab,mab}, where 𝑚 is an integer ≥ 1. A profinite group 𝐺 is said to
be of 𝑝-cycl-MLF★, pro-𝛴 -type if there exists an isomorphism of profinite groups between 𝐺 and
𝐺
★, pro-𝛴𝐾
𝐾 for some mixed-characteristic local field 𝐾 of 𝑝-cyclotomic type and some subset 𝛴𝐾 of

𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾 . We define filtered and 𝐼-filtered profinite groups of 𝑝-cycl-MLF★, pro-𝛴 -
type for a closed interval 𝐼 ⊆ [0,+∞) in a similar way.

⋄
Suppose that 𝐺 is a profinite group of either MLFmab, pro-𝛴 ′-type or 𝑝-cycl-MLFmab, pro-𝛴 -type. We

put 𝑝 := 𝑝(𝐺ab), and choose a decreasing sequence

𝐺 = 𝐻0 ⊇ 𝐻1 ⊇ · · · ⊇ 𝐻𝜈 ⊇ · · ·

of open normal subgroups of 𝐺 such that

(i) 𝐻ab
𝜈 [𝑝𝜈] � (Z/𝑝𝜈Z)+;

(ii) 𝐺/𝐻𝜈 is abelian,

for each 𝜈 ∈ Z≥0.

• If 𝐺 is of MLFmab, pro-𝛴 ′-type, then there exists an isomorphism

𝛼′ : 𝐺 �→ 𝐺
mab, pro-𝛴 ′𝐾
𝐾

of profinite groups for some mixed-characteristic local field 𝐾 and some subset 𝛴 ′𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰
containing all prime factors of 𝑝𝐾 (𝑝𝐾 − 1). Such a sequence {𝐻𝜈}𝜈 satisfying (i) and (ii) exists:
Let 𝜁𝑝𝜈𝐾 ∈ 𝐾

alg be a primitive (𝑝𝜈𝐾 )th root of unity for each 𝜈 ≥ 0. Then [𝐾 (𝜁𝑝𝜈𝐾 ) : 𝐾] divides
𝑝𝜈−1
𝐾 (𝑝𝐾 − 1) for all 𝜈 ≥ 1. Hence 𝐾 (𝜁𝑝𝜈𝐾 ) ⊆ 𝐾

ab, pro-𝛴 ′𝐾 , and we can choose

𝐻𝜈 = 𝛼
′−1(Gal(𝐾mab, pro-𝛴 ′𝐾/𝐾 (𝜁𝑝𝜈𝐾 ))).

For each □ ∈ {𝜈, 𝜈 + 1}, let 𝐿□ be the field fixed by 𝛼′(𝐻□). Then 𝐿□ is contained in 𝐾ab, pro-𝛴 ′𝐾 ,
and we have the following commutative diagram:

(𝐿×𝜈 )∧, pro-𝛴 ′𝐾 𝐺
ab, pro-𝛴 ′𝐾
𝐿𝜈

𝐻ab
𝜈

(𝐿×𝜈+1)
∧, pro-𝛴 ′𝐾 𝐺

ab, pro-𝛴 ′𝐾
𝐿𝜈+1

𝐻ab
𝜈+1

�,𝑟 ′𝜈

⊆∧,pro-𝛴 ′
𝐾

�,𝛼′−1
𝜈

Ver

�,𝑟 ′𝜈+1 �,𝛼′−1
𝜈+1

,

where 𝛼′□ is the isomorphism of profinite groups induced by 𝛼′ and 𝑟 ′□ denotes the isomorphism
(Art𝐿□)∧, pro-𝛴 ′𝐾 .
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• If 𝐺 is of 𝑝-cycl-MLFmab, pro-𝛴 -type, then there exists an isomorphism

𝛼 : 𝐺 �→ 𝐺
mab, pro-𝛴𝐾
𝐾

of profinite groups for some mixed-characteristic local field 𝐾 of 𝑝-cyclotomic type and some
subset 𝛴𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾 . Such a sequence {𝐻𝜈}𝜈 satisfying (i) and (ii) exists: Let
𝜁𝑝𝜈𝐾 ∈ 𝐾

alg be a primitive (𝑝𝜈𝐾 )th root of unity for each 𝜈 ≥ 0. Since 𝜁𝑝𝐾 ∈ 𝐾 , 𝐾 (𝜁𝑝𝜈𝐾 )/𝐾 is an
abelian 𝑝𝐾 -extension, and we can choose

𝐻𝜈 = 𝛼
−1(Gal(𝐾mab, pro-𝛴𝐾/𝐾 (𝜁𝑝𝜈𝐾 ))).

For each □ ∈ {𝜈, 𝜈 + 1}, let 𝐿□ be the field fixed by 𝛼(𝐻□). Then 𝐿□ is contained in 𝐾ab, pro-𝛴𝐾 ,
and we have the following commutative diagram:

(𝐿×𝜈 )∧, pro-𝛴𝐾 𝐺
ab, pro-𝛴𝐾
𝐿𝜈

𝐻ab
𝜈

(𝐿×𝜈+1)
∧, pro-𝛴𝐾 𝐺

ab, pro-𝛴𝐾
𝐿𝜈+1

𝐻ab
𝜈+1

�,𝑟𝜈

⊆∧,pro-𝛴𝐾

�,𝛼−1
𝜈

Ver

�,𝑟𝜈+1 �,𝛼−1
𝜈+1

,

where 𝛼□ is the isomorphism of profinite groups induced by 𝛼 and 𝑟□ denotes the isomorphism
(Art𝐿□)∧, pro-𝛴𝐾 .

We see that the transfer map Ver : 𝐻ab
𝜈 → 𝐻ab

𝜈+1 restricts to an injective homomorphism 𝐻ab
𝜈 [𝑝𝜈] →

𝐻ab
𝜈+1 [𝑝

𝜈+1] in both cases; we obtain the inverse system

· · · 𝐻ab
𝜈+1 [𝑝

𝜈+1] 𝐻ab
𝜈 [𝑝𝜈] · · · 𝐻ab

1 [𝑝]
(−) 𝑝 (−) 𝑝 (−) 𝑝 (−) 𝑝

of𝐺-modules by identifying 𝐻ab
𝜈 [𝑝𝜈] with a subgroup of 𝐻ab

𝜈+1 [𝑝
𝜈+1]. By passage to the limit, we obtain

𝑇 (𝐺) := lim←−−
𝜈

𝐻ab
𝜈 [𝑝𝜈] .

We shall write
𝜒(𝐺) : 𝐺 → Aut(𝑇 (𝐺)) (= Z×𝑝)

for the 𝑝-adic character of 𝐺 attached to 𝑇 (𝐺). The proof of the following proposition (and that 𝑇 (𝐺) is
well-defined up to isomorphism) follows the same steps as that of Theorem 5.2.

Proposition B.4. Let 𝐾 be a mixed-characteristic local field, and let 𝛴𝐾 (resp. 𝛴 ′𝐾 ) be any subset of
𝔓𝔯𝔦𝔪𝔢𝔰 containing all prime factors of 𝑝𝐾 (resp. 𝑝𝐾 (𝑝𝐾 − 1)).

(1) The 𝑝𝐾 -adic cyclotomic character 𝜒𝐾 factors through 𝜒(𝐺mab, pro-𝛴 ′𝐾
𝐾 ).

(2) If 𝐾 is of 𝑝-cyclotomic type, then 𝜒𝐾 factors through 𝜒(𝐺mab, pro-𝛴𝐾
𝐾 ).

⋄

Intuitively speaking, 𝜒𝐾 can be recovered entirely group-theoretically from:

• the profinite group 𝐺mab, pro-𝛴 ′𝐾
𝐾 ;

• the profinite group 𝐺mab, pro-𝛴𝐾
𝐾 , if 𝐾 is of 𝑝-cyclotomic type.
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Ramification groups in upper numbering: Wild inertia groups
We fix a real number 𝛿 ∈ (0, 1] throughout this appendix. Let 𝑚 be an integer ≥ 1, and let 𝐺 be a
[0, 𝛿]-filtered profinite group of MLF𝑚+1, pro-𝛴 -type. We set

𝐺 (0+) :=
⋃

𝑣∈ (0, 𝛿 ]
𝐺 (𝑣).

Let ℋ𝑚(𝐺) denote the set of open normal subgroups of𝐺 containing𝐺 [𝑚] , ordered by reverse inclusion.
For each 𝐻 ∈ℋ𝑚(𝐺), we denote by𝑈 (𝐻) the image of 𝐻 ∩ 𝐺 (0+) under the natural map 𝐻 ↠ 𝐻ab.

We first claim that, for 𝐻1, 𝐻2 ∈ℋ𝑚(𝐺) with 𝐻1 ⊇ 𝐻2, the transfer map Ver : 𝐻ab
1 → 𝐻ab

2 restricts to
𝑈 (𝐻1) → 𝑈 (𝐻2), and that {𝑈 (𝐻)}𝐻∈ℋ𝑚 (𝐺) forms a direct system of 𝐺-modules, together with 𝑉1,2 :=
Ver |𝑈 (𝐻1 ) : 𝑈 (𝐻1) → 𝑈 (𝐻2) for each pair 𝐻1 ⊇ 𝐻2. Suppose that:

• there exists an isomorphism 𝛼[0, 𝛿 ] : 𝐺 → 𝐺
𝑚+1, pro-𝛴𝐾
𝐾 of [0, 𝛿]-filtered profinite groups for some

mixed-characteristic local field 𝐾 and some subset 𝛴𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾 ;

• for each □ ∈ {1, 2}, the image of 𝐻□ under 𝛼[0, 𝛿 ] equals Gal(𝐾𝑚+1, pro-𝛴𝐾/𝐿□), where 𝐿□/𝐾 is a
finite Galois subextension of 𝐾𝑚, pro-𝛴𝐾 .

Note that
Gal(𝐾𝑚+1, pro-𝛴𝐾/𝐿□)ab = Gal(𝐾𝑚+1/𝐿□)ab, pro-𝛴𝐾 = 𝐺ab, pro-𝛴𝐾

𝐿□

by Theorem 4.3 (and hence 𝐻ab
□ is a profinite group of MLFab, pro-𝛴 -type). The isomorphism

𝛼[0, 𝛿 ]□ : 𝐻ab
□ → 𝐺

ab, pro-𝛴𝐾
𝐿□

induced by 𝛼[0, 𝛿 ] fits into the following commutative diagram:

𝐻ab
1 𝐺

ab, pro-𝛴𝐾
𝐿1

(𝐿×1 )
∧, pro-𝛴𝐾

𝐻ab
2 𝐺

ab, pro-𝛴𝐾
𝐿2

(𝐿×2 )
∧, pro-𝛴𝐾

�,𝛼 [0, 𝛿 ]1

Ver

�, 𝑟−1
1

⊆∧, pro-𝛴𝐾

�,𝛼 [0, 𝛿 ]2 �, 𝑟−1
2

,

where 𝑟□ denotes the isomorphism (Art𝐿□)∧, pro-𝛴𝐾 . Since 𝐻□ ∩ 𝐺 (0+) ⊆ 𝐺 is mapped onto

Gal(𝐾𝑚+1, pro-𝛴𝐾/𝐿□) ∩ 𝐺𝑚+1, pro-𝛴𝐾
𝐾 (0+) = Gal(𝐾𝑚+1, pro-𝛴𝐾/𝐿□) (0+)

under 𝛼[0, 𝛿 ] ,𝑈 (𝐻□) ⊆ 𝐻ab
□ is mapped onto 𝐺ab, pro-𝛴𝐾

𝐿□
(0+) under 𝛼[0, 𝛿 ]□ . It follows that

(𝑟−1
□ ◦ 𝛼

[0, 𝛿 ]
□ ) (𝑈 (𝐻□)) = 𝑟−1

□ (𝐺
ab, pro-𝛴𝐾
𝐿□

(0+)) = 𝑈𝐿□ (1)

for each □ ∈ {1, 2}; the claim holds, since 𝑈𝐿1 (1) is mapped into 𝑈𝐿2 (1) under the right vertical ar-
row. It also follows immediately that {𝑈 (𝐻)}𝐻∈ℋ𝑚 (𝐺) is a direct system induced by the direct system
{𝑈𝐿 (1)}𝐿/𝐾 , where 𝐿/𝐾 runs through the finite Galois subextensions of 𝐾𝑚, pro-𝛴𝐾/𝐾; each 𝑈 (𝐻) is a
(topological) Z𝑝-module of finite rank, where 𝑝 := 𝑝(𝐺ab) = 𝑝𝐾 . Hence we obtain a direct system{

𝑈 (𝐻) ⊗Z𝑝 Q𝑝

}
𝐻∈ℋ𝑚 (𝐺)

of 𝐺-modules; we set
𝑘𝑚, pro-𝛴 ,+(𝐺) := lim−−→

𝐻∈ℋ𝑚 (𝐺)

(
𝑈 (𝐻) ⊗Z𝑝 Q𝑝

)
.

The proof of the following proposition follows the same steps as that of Theorem 6.2.
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Proposition B.5. Let 𝐾 be a mixed-characteristic local field, and let 𝛴𝐾 be any subset of 𝔓𝔯𝔦𝔪𝔢𝔰 con-
taining 𝑝𝐾 . Let 𝑚 be an integer ≥ 1. Then there exists an isomorphism

𝑘𝑚, pro-𝛴 ,+(𝐺𝑚+1, pro-𝛴𝐾
𝐾 ) �−→ 𝐾𝑚, pro-𝛴𝐾 ,+

of 𝐺𝑚+1, pro-𝛴𝐾
𝐾 -modules. ⋄

Speaking from an intuitive level, the 𝐺𝑚+1, pro-𝛴𝐾
𝐾 -module 𝐾𝑚, pro-𝛴𝐾 ,+ can be recovered entirely

group-theoretically from the [0, 𝛿]-filtered profinite group 𝐺𝑚+1, pro-𝛴𝐾
𝐾 .

Restoration of the absolute ramification index
Let 𝐺 be a [0, 1 + 𝛿]-filtered profinite group of MLFab, pro-𝛴 -type. We set:

• 𝑓 (𝐺) := log𝑝 (𝐺) |𝐺 (1)/𝐺 (1 + 𝛿) |;

• 𝑒(𝐺) := 𝑑 (𝐺)/ 𝑓 (𝐺).

Proposition B.6. Let 𝐾 be a mixed-characteristic local field. We have

𝑒𝐾 = 𝑒(𝐺ab, pro-𝛴𝐾
𝐾 ), 𝑓𝐾 = 𝑓 (𝐺ab, pro-𝛴𝐾

𝐾 ),

for any subset 𝛴𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾 . ⋄

Intuitively speaking, 𝑒𝐾 and 𝑓𝐾 can be recovered entirely group-theoretically from the [0, 1 + 𝛿]-
filtered profinite group 𝐺ab, pro-𝛴𝐾

𝐾 .

Proof. We have

|𝐺ab, pro-𝛴𝐾
𝐾 (1)/𝐺ab, pro-𝛴𝐾

𝐾 (1 + 𝛿) | = | (1 + 𝔭𝐾 )/(1 + 𝔭2
𝐾 ) | = |𝔨+𝐾 | = 𝑝

𝑓𝐾
𝐾 .

Hence the second equality follows. The first equality follows from the second equality, together with
Theorem B.2. □

Ramification groups in upper numbering: Higher ramification groups
We now assume that 𝐺 is a filtered profinite group of MLF𝑚+1, pro-𝛴 -type for an integer 𝑚 ≥ 1, i.e., there
exists an isomorphism 𝛼filt : 𝐺 → 𝐺

𝑚+1, pro-𝛴𝐾
𝐾 of filtered profinite groups for some mixed-characteristic

local field 𝐾 and some subset 𝛴𝐾 of 𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾 . For any closed normal subgroup 𝑁 of 𝐺
and any 𝐻 ∈ ℋ𝑚(𝐺), we shall regard 𝐺/𝑁 and 𝐻 as filtered profinite groups in the manners described
in §6. We shall also regard 𝐻ab as a filtered profinite group (of MLFab, pro-𝛴 -type) by setting

𝐻ab(𝑤) := 𝐻 (𝑤)𝐻 [1]/𝐻 [1]

for each 𝑤 ≥ 0. We denote by𝑈 (𝐻, 𝑤) the group 𝐻ab(𝑤).
We claim that, for 𝐻1, 𝐻2 ∈ℋ𝑚(𝐺) with 𝐻1 ⊇ 𝐻2, the transfer map Ver : 𝐻ab

1 → 𝐻ab
2 restricts to

𝑈 (𝐻1, 𝜀(𝐺)𝑒(𝐻ab
1 )) → 𝑈 (𝐻2, 𝜀(𝐺)𝑒(𝐻ab

2 )),

and that if we denote by𝑈′(𝐻) the group𝑈 (𝐻, 𝜀(𝐺)𝑒(𝐻ab)) for each 𝐻 ∈ℋ𝑚(𝐺),

{𝑈′(𝐻)}𝐻∈ℋ𝑚 (𝐺)

forms a direct system of 𝐺-modules, together with 𝑉 ′1,2 := Ver |𝑈′ (𝐻1 ) : 𝑈′(𝐻1) → 𝑈′(𝐻2) for each pair
𝐻1 ⊇ 𝐻2. Suppose that, for each □ ∈ {1, 2}, the image of 𝐻□ under 𝛼filt equals Gal(𝐾𝑚+1, pro-𝛴𝐾/𝐿□),

29



where 𝐿□/𝐾 is a finite Galois subextension of 𝐾𝑚, pro-𝛴𝐾 . Then the isomorphism 𝛼filt
□ : 𝐻ab

□ → 𝐺
ab, pro-𝛴𝐾
𝐿□

induced by 𝛼filt fits into the following commutative diagram:

𝐻ab
1 𝐺

ab, pro-𝛴𝐾
𝐿1

(𝐿×1 )
∧, pro-𝛴𝐾

𝐻ab
2 𝐺

ab, pro-𝛴𝐾
𝐿2

(𝐿×2 )
∧, pro-𝛴𝐾

�,𝛼filt
1

Ver

�, 𝑟−1
1

⊆∧, pro-𝛴𝐾

�,𝛼filt
2 �, 𝑟−1

2

,

where 𝑟□ denotes the isomorphism (Art𝐿□)∧, pro-𝛴𝐾 . Since 𝐻□(𝑤) is mapped onto

Gal(𝐾𝑚+1, pro-𝛴𝐾/𝐿□)(𝑤)

under 𝛼filt |𝐻□ for all 𝑤 ≥ 0,𝑈′(𝐻□) ⊆ 𝐻ab
□ is mapped onto

𝐺
ab, pro-𝛴𝐾
𝐿□

(𝜀(𝐺)𝑒(𝐻ab
□ ))

under 𝛼filt
□ . It follows from local class field theory that

(𝑟−1
□ ◦ 𝛼filt

□ )(𝑈′(𝐻□)) = 𝑟−1
□ (𝐺

ab, pro-𝛴𝐾
𝐿□

(𝜀(𝐺)𝑒(𝐻ab
□ ))) = 𝑟−1

□ (𝐺
ab, pro-𝛴𝐾
𝐿□

(𝜀𝐾𝑒𝐿□)) = 𝑈𝐿□ (𝜀𝐾𝑒𝐿□)

for each□ ∈ {1, 2}; the claim holds, since𝑈𝐿1 (𝜀𝐾𝑒𝐿1) is mapped into𝑈𝐿2 (𝜀𝐾𝑒𝐿2) under the right vertical
arrow. Therefore, we obtain a direct system {𝑈′(𝐻)}𝐻∈ℋ𝑚 (𝐺) of 𝐺-modules in a way similar to the way
in which we obtained {𝑈 (𝐻)}𝐻∈ℋ𝑚 (𝐺) . We again put 𝑝 := 𝑝(𝐺ab) = 𝑝𝐾 . We set:

𝒪+
𝑘𝑚, pro-𝛴 (𝐺) := 𝑝−𝜀 (𝐺)

©« lim−−→
𝐻∈ℋ𝑚 (𝐺)

𝑈′(𝐻)ª®¬ ©«⊆ 𝑘𝑚, pro-𝛴 ,+(𝐺) = lim−−→
𝐻∈ℋ𝑚 (𝐺)

(
𝑈 (𝐻) ⊗Z𝑝 Q𝑝

)ª®¬ ,
𝒞+
𝑘𝑚, pro-𝛴 (𝐺) :=

(
lim←−−
𝑛

(
𝒪+
𝑘𝑚, pro-𝛴 (𝐺)/𝑝𝑛𝒪+𝑘𝑚, pro-𝛴 (𝐺)

))
⊗Z𝑝 Q𝑝 .

The proof of the following proposition follows the same steps as that of Theorem 6.3.

Proposition B.7. Let 𝐾 be a mixed-characteristic local field, and let 𝛴𝐾 be any subset of 𝔓𝔯𝔦𝔪𝔢𝔰 con-
taining 𝑝𝐾 . Let 𝑚 be an integer ≥ 1. Then the isomorphism of Theorem B.5 restricts to an isomorphism

𝒪+
𝑘𝑚, pro-𝛴 (𝐺𝑚+1, pro-𝛴𝐾

𝐾 ) �−→ 𝒪+
𝐾𝑚, pro-𝛴𝐾

of 𝐺𝑚+1, pro-𝛴𝐾
𝐾 -modules, where 𝒪𝐾𝑚, pro-𝛴 denotes the integral closure of 𝒪𝐾 in 𝐾𝑚, pro-𝛴 . In particular,

there exists an isomorphism
𝒞+
𝑘𝑚, pro-𝛴 (𝐺𝑚+1, pro-𝛴𝐾

𝐾 ) �−→ 𝒞+
𝐾𝑚, pro-𝛴𝐾

of 𝐺𝑚+1, pro-𝛴𝐾
𝐾 -modules. ⋄

Speaking from an intuitive level, the𝐺𝑚+1, pro-𝛴𝐾
𝐾 -module𝒞+

𝐾𝑚, pro-𝛴𝐾
can be recovered entirely group-

theoretically from the filtered profinite group 𝐺𝑚+1, pro-𝛴𝐾
𝐾 .

Abelian pro-𝛴 representations
Let 𝐺 be a filtered profinite group of MLF𝑚+1, pro-𝛴 -type for an integer 𝑚 ≥ 1; we set 𝑝 := 𝑝(𝐺ab). Let
(𝜌,𝑉) and 𝜒 be a 𝑝-adic representation and a 𝑝-adic character of 𝐺, respectively. We shall write

𝑑𝑖HT,𝑚, pro-𝛴 (𝐺, 𝜒, 𝜌,𝑉) := dimQ𝑝

(
𝒞+
𝑘𝑚, pro-𝛴 (𝐺) ⊗Q𝑝 𝑉 (𝜒−𝑖)

)𝐺
/𝑑 (𝐺ab)

for each 𝑖 ∈ Z.
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Proposition B.8. Let 𝐾 be a mixed-characteristic local field, 𝛴𝐾 (resp. 𝛴 ′𝐾 ) a subset of 𝔓𝔯𝔦𝔪𝔢𝔰 contain-
ing all prime factors of 𝑝𝐾 (resp. 𝑝𝐾 (𝑝𝐾 − 1)), and 𝑚 an integer ≥ 1. Suppose that (𝜌,𝑉) is a 𝑝𝐾 -adic
representation of 𝐺𝐾 .

(1) If 𝜌 factors through 𝐺𝑚, pro-𝛴 ′𝐾
𝐾 , then

𝑑𝑖HT,𝑚, pro-𝛴 (𝐺
𝑚+1, pro-𝛴 ′𝐾
𝐾 , 𝜒(𝐺mab, pro-𝛴 ′𝐾

𝐾 ), 𝜌,𝑉) = 𝑑𝑖HT,𝐾 (𝜌,𝑉)

for each 𝑖 ∈ Z.

(2) If 𝐾 is of 𝑝-cyclotomic type and 𝜌 factors through 𝐺𝑚, pro-𝛴𝐾
𝐾 , then

𝑑𝑖HT,𝑚, pro-𝛴 (𝐺
𝑚+1, pro-𝛴𝐾
𝐾 , 𝜒(𝐺mab, pro-𝛴𝐾

𝐾 ), 𝜌,𝑉) = 𝑑𝑖HT,𝐾 (𝜌,𝑉)

for each 𝑖 ∈ Z.

⋄

The assertions of Theorem B.8 can be translated into intuitive terms as follows:

(1) If 𝜌 factors through 𝐺𝑚, pro-𝛴 ′𝐾
𝐾 , then the 𝑖th Hodge-Tate number of (𝜌,𝑉) (and hence the issue

of whether or not (𝜌,𝑉) is Hodge-Tate) can be determined entirely group-theoretically from the
filtered profinite group 𝐺𝑚+1, pro-𝛴 ′𝐾

𝐾 and its action on 𝑉 ;

(2) If 𝐾 is of 𝑝-cyclotomic type and 𝜌 factors through 𝐺𝑚, pro-𝛴𝐾
𝐾 , then the 𝑖th Hodge-Tate number of

(𝜌,𝑉) (and hence the issue of whether or not (𝜌,𝑉) is Hodge-Tate) can be determined entirely
group-theoretically from the filtered profinite group 𝐺𝑚+1, pro-𝛴𝐾

𝐾 and its action on 𝑉 ;

Proof. (1) We have

𝑑𝑖HT,𝑚, pro-𝛴 (𝐺
𝑚+1, pro-𝛴 ′𝐾
𝐾 , 𝜒(𝐺mab, pro-𝛴 ′𝐾

𝐾 ), 𝜌,𝑉) = dim𝐾

(
𝒞(𝐾𝑚, pro-𝛴 ′𝐾 ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
from Theorems B.2, B.4 and B.7. Since both 𝜌 and 𝜒𝐾 annihilates

Ker (𝐺𝐾 ↠ 𝐺
𝑚, pro-𝛴 ′𝐾
𝐾 ),

we see that(
C𝑝𝐾 ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
⊇

(
𝒞(𝐾𝑚, pro-𝛴 ′𝐾 ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
⊇

(
𝒞((𝐾alg)Ker (𝜌(−𝑖) ) ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
.

By applying Theorem 7.1, we deduce the desired equality.
(2) Similarly, we have

𝑑𝑖HT,𝑚, pro-𝛴 (𝐺
𝑚+1, pro-𝛴𝐾
𝐾 , 𝜒(𝐺mab, pro-𝛴𝐾

𝐾 ), 𝜌,𝑉) = dim𝐾

(
𝒞(𝐾𝑚, pro-𝛴𝐾 ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
.

Since both 𝜌 and 𝜒𝐾 annihilates
Ker (𝐺𝐾 ↠ 𝐺

𝑚, pro-𝛴𝐾
𝐾 ),

we see that(
C𝑝𝐾 ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
⊇

(
𝒞(𝐾𝑚, pro-𝛴𝐾 ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
⊇

(
𝒞((𝐾alg)Ker (𝜌(−𝑖) ) ) ⊗Q𝑝𝐾 𝑉 (−𝑖)

)𝐺𝐾
.

By applying Theorem 7.1 again, we deduce the desired equality. □

Proposition B.9. For each □ ∈ {◦, •}, let 𝐾□ be a mixed-characteristic local field, 𝛴𝐾□ (resp. 𝛴 ′𝐾□
) a

subset of 𝔓𝔯𝔦𝔪𝔢𝔰 containing all prime factors of 𝑝𝐾□ (resp. 𝑝𝐾□ (𝑝𝐾□ − 1)).
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(1) Assume that
𝛼2, pro-𝛴 ′ : 𝐺

mab, pro-𝛴 ′𝐾◦
𝐾◦

�→ 𝐺
mab, pro-𝛴 ′𝐾•
𝐾•

is an isomorphism of filtered profinite groups, and 𝐸/Q𝑝𝐾◦ (= Q𝑝𝐾• ) is a finite Galois extension
containing both 𝐾◦ and 𝐾•. If (𝜌,𝑉) is a 1-dimensional 𝐸-linear representation of 𝐺𝐾◦ such that
𝜌 factors through

𝐺
ab, pro-𝛴 ′𝐾◦
𝐾◦

,

then (𝜌 ◦ (𝛼1, pro-𝛴 ′)−1, 𝑉) is a uniformizing representation of 𝐺𝐾• if and only if (𝜌,𝑉) is a uni-
formizing representation of 𝐺𝐾◦ , where

𝛼1, pro-𝛴 ′ : 𝐺
ab, pro-𝛴 ′𝐾◦
𝐾◦

�→ 𝐺
ab, pro-𝛴 ′𝐾•
𝐾•

is the isomorphism induced by 𝛼2, pro-𝛴 ′ .

(2) Assume that 𝐾◦ and 𝐾• are of 𝑝-cyclotomic type,

𝛼2, pro-𝛴 : 𝐺mab, pro-𝛴𝐾◦
𝐾◦

�→ 𝐺
mab, pro-𝛴𝐾•
𝐾•

is an isomorphism of filtered profinite groups, and 𝐸/Q𝑝𝐾◦ (= Q𝑝𝐾• ) is a finite Galois extension
containing both 𝐾◦ and 𝐾•. If (𝜌,𝑉) is a 1-dimensional 𝐸-linear representation of 𝐺𝐾◦ such that
𝜌 factors through

𝐺
ab, pro-𝛴𝐾◦
𝐾◦

,

then (𝜌 ◦ (𝛼1, pro-𝛴 )−1, 𝑉) is a uniformizing representation of 𝐺𝐾• if and only if (𝜌,𝑉) is a uni-
formizing representation of 𝐺𝐾◦ , where

𝛼1, pro-𝛴 : 𝐺ab, pro-𝛴𝐾◦
𝐾◦

�→ 𝐺
ab, pro-𝛴𝐾•
𝐾•

is the isomorphism induced by 𝛼2, pro-𝛴 .

⋄

Proof. It follows immediately from Theorems B.8 and 7.5. □

Theorem B.10.

(1) Let 𝐾◦ and 𝐾• be mixed-characteristic local fields, and let 𝛴 ′𝐾□
be a subset of 𝔓𝔯𝔦𝔪𝔢𝔰 containing

all prime factors of 𝑝𝐾□ (𝑝𝐾□ − 1) for each □ ∈ {◦, •}. If there exists an isomorphism

𝛼2, pro-𝛴 ′ : 𝐺
mab, pro-𝛴 ′𝐾◦
𝐾◦

�→ 𝐺
mab, pro-𝛴 ′𝐾•
𝐾•

of filtered profinite groups, then there exists an isomorphism 𝑓 : 𝐾◦ → 𝐾•.

(2) Let 𝐾◦ and 𝐾• be mixed-characteristic local fields of 𝑝-cyclotomic type, and let 𝛴𝐾□ be a subset of
𝔓𝔯𝔦𝔪𝔢𝔰 containing 𝑝𝐾□ for each □ ∈ {◦, •}. If there exists an isomorphism

𝛼2, pro-𝛴 : 𝐺mab, pro-𝛴𝐾◦
𝐾◦

�→ 𝐺
mab, pro-𝛴𝐾•
𝐾•

of filtered profinite groups, then there exists an isomorphism 𝑓 : 𝐾◦ → 𝐾•.

⋄
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Proof. (1) We choose a finite Galois extension 𝐸/Q𝑝◦ (= Q𝑝•) that contains both 𝐾◦ and 𝐾•. If we denote
by 𝜌◦ the composition

𝜌◦ : 𝐺ab
𝐾◦

Ver−−→ 𝐺ab
𝐸 ↠ 𝐺ab

𝐸 (1) → 𝑈𝐸 (1),

where the second (resp. third) arrow is the natural surjection (resp. the isomorphism Art−1
𝐸 ), then

(𝜌◦, 𝑉 := 𝐸+) is a uniformizing representation of 𝐺𝐾◦ .
We see that 𝜌◦ factors through 𝐺ab, pro-𝑝𝐾◦

𝐾◦
(and hence through 𝐺

ab, pro-𝛴 ′𝐾◦
𝐾◦

); it follows from Theo-
rem B.9 that (𝜌• := 𝜌◦ ◦ (𝛼1, pro-𝑝)−1, 𝑉) is also a uniformizing representation of 𝐺𝐾• , where

𝛼1, pro-𝑝 : 𝐺ab, pro-𝑝𝐾◦
𝐾◦

�→ 𝐺
ab, pro-𝑝𝐾•
𝐾•

is the isomorphism induced by 𝛼2, pro-𝛴 ′ . Hence there exist an open subgroup 𝐼◦ (resp. 𝐼•) of 𝑈𝐾◦ (1)
(resp. 𝑈𝐾• (1)) and a field homomorphism 𝜄◦ : 𝐾◦ → 𝐸 (resp. 𝜄• : 𝐾• → 𝐸) such that 𝛼1, pro-𝑝 (𝐼◦) = 𝐼•
and the diagram

𝐾×◦

𝐼◦ 𝑈𝐾◦ (1) 𝐺
ab, pro-𝑝𝐾◦
𝐾◦

𝐸×

𝐼• 𝑈𝐾• (1) 𝐺
ab, pro-𝑝𝐾•
𝐾•

𝐸×

𝐾×•

𝜄×◦
⊆

⊆

�,𝛼1 |𝐼◦

Art𝐾◦

�,𝛼1 |𝑈𝐾◦ (1)

𝜌◦

�,𝛼1, pro-𝑝

⊆

⊆

Art𝐾• 𝜌•

𝜄×•

commutes. In particular, 𝜄• |𝐼• ◦ 𝛼1 |𝐼◦ = 𝜄◦ |𝐼◦ , and by Theorem 8.1, 𝜄◦(𝐾◦) = 𝜄•(𝐾•) in 𝐸 . Therefore, we
have the following field isomorphism:

𝑓 : 𝐾◦
�, 𝜄◦−−−→ 𝜄◦(𝐾◦) = 𝜄•(𝐾•)

�, 𝜄−1
•−−−−→ 𝐾•.

(2) The proof of (2) follows mutatis mutandis from the proof of (1). □
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